/********************************************************** This software is part of J.-S. Caux's ABACUS library. Copyright (c) J.-S. Caux. ----------------------------------------------------------- File: LiebLin_DSF_over_Ensemble_par.cc Purpose: main function for ABACUS for LiebLin gas, averaging over an Ensemble, parallel implementation. ***********************************************************/ #include "ABACUS.h" #include "mpi.h" using namespace std; using namespace ABACUS; int main(int argc, char* argv[]) { if (argc != 10) { // provide some info cout << endl << "Welcome to ABACUS\t(copyright J.-S. Caux)." << endl; cout << endl << "Usage of LiebLin_DSF_Tgt0 executable: " << endl; cout << endl << "Provide the following arguments:" << endl << endl; cout << "char whichDSF \t\t Which structure factor should be calculated ? Options are: " "d for rho rho, g for psi psi{dagger}, o for psi{dagger} psi" << endl; cout << "DP c_int \t\t Value of the interaction parameter: use positive real values only" << endl; cout << "DP L \t\t\t Length of the system: use positive real values only" << endl; cout << "int N \t\t\t Number of particles: use positive integer values only" << endl; cout << "int iKmin" << endl << "int iKmax \t\t Min and max momentum integers to scan over: " "recommended values: -2*N and 2*N" << endl; cout << "DP kBT \t\t Temperature (positive only of course)" << endl; cout << "int Max_Secs \t\t Allowed computational time: (in seconds)" << endl; cout << "bool refine \t\t Is this a refinement of earlier calculations ? (0 == false, 1 == true)" << endl; cout << endl << "EXAMPLE: " << endl << endl; cout << "LiebLin_DSF_over_Ensemble d 1.0 100.0 100 0 200 0.56 10 600 0" << endl << endl; } else { // (argc == 10), correct nr of arguments char whichDSF = *argv[1]; DP c_int = atof(argv[2]); DP L = atof(argv[3]); int N = atoi(argv[4]); int iKmin = atoi(argv[5]); int iKmax = atoi(argv[6]); DP kBT = atof(argv[7]); int Max_Secs = atoi(argv[8]); bool refine = (atoi(argv[9]) == 1); if (refine == false) ABACUSerror("Please run the serial version of LiebLin_DSF_over_Ensemble first."); MPI::Init(argc, argv); DP tstart = MPI::Wtime(); int rank = MPI::COMM_WORLD.Get_rank(); int nr_processors = MPI::COMM_WORLD.Get_size(); if (nr_processors < 2) ABACUSerror("Give at least 2 processors to ABACUS parallel !"); // Start by constructing (or loading) the state ensemble. LiebLin_Diagonal_State_Ensemble ensemble; stringstream ensfilestrstream; ensfilestrstream << "LiebLin_c_int_" << c_int << "_L_" << L << "_N_" << N << "_kBT_" << kBT << ".ens"; string ensfilestr = ensfilestrstream.str(); const char* ensfile_Cstr = ensfilestr.c_str(); if (!refine) { // Construct the state ensemble ensemble = LiebLin_Thermal_Saddle_Point_Ensemble (c_int, L, N, kBT); ensemble.Save(ensfile_Cstr); // Save the ensemble } else { // load the ensemble data ensemble.Load(c_int, L, N, ensfile_Cstr); } MPI_Barrier (MPI::COMM_WORLD); // Now perform the DSF calculation over each state in the ensemble int Max_Secs_used = Max_Secs/ensemble.nstates; DP supercycle_time = 600.0; // allotted time per supercycle if (Max_Secs_used <= supercycle_time) ABACUSerror("Please allow more time in LiebLin_DSF_par."); // Main loop over ensemble: for (int ns = 0; ns < ensemble.nstates; ++ns) { tstart = MPI::Wtime(); DP tnow = MPI::Wtime(); string defaultScanStatename = ensemble.state[ns].label; while (tnow - tstart < Max_Secs_used - supercycle_time) { // space for one more supercycle if (rank == 0) // Split up thread list into chunks, one per processor Prepare_Parallel_Scan_LiebLin (whichDSF, c_int, L, N, iKmin, iKmax, kBT, defaultScanStatename, nr_processors); // Barrier synchronization, to make sure other processes wait for process of rank 0 // to have finished splitting up the thr file into pieces before starting: MPI_Barrier (MPI::COMM_WORLD); // then everybody gets going on their own chunk ! Scan_LiebLin (whichDSF, ensemble.state[ns], ensemble.state[ns].label, iKmin, iKmax, supercycle_time, 1.0e+6, refine, rank, nr_processors); // Another barrier synchronization MPI_Barrier (MPI::COMM_WORLD); // Now that everybody is done, digest data into unique files if (rank == 0) Wrapup_Parallel_Scan_LiebLin (whichDSF, c_int, L, N, iKmin, iKmax, kBT, defaultScanStatename, nr_processors); // Another barrier synchronization MPI_Barrier (MPI::COMM_WORLD); tnow = MPI::Wtime(); } // while (tnow - tstart... } // for ns MPI_Barrier (MPI::COMM_WORLD); // Final wrapup of the data if (rank == 0) { // Evaluate the f-sumrule stringstream FSR_stringstream; string FSR_string; Data_File_Name (FSR_stringstream, whichDSF, c_int, L, N, iKmin, iKmax, kBT, 0.0, ""); FSR_stringstream << "_ns_" << ensemble.nstates << ".fsr"; FSR_string = FSR_stringstream.str(); const char* FSR_Cstr = FSR_string.c_str(); DP Chem_Pot = 0.0; Evaluate_F_Sumrule (whichDSF, c_int, L, N, kBT, ensemble.nstates, Chem_Pot, iKmin, iKmax, FSR_Cstr); } MPI_Barrier (MPI::COMM_WORLD); } // correct nr of arguments MPI::Finalize(); return(0); }