/********************************************************** This software is part of J.-S. Caux's ABACUS library. Copyright (c) J.-S. Caux. ----------------------------------------------------------- File: LiebLin_DSF_par_Prepare.cc Purpose: Parallel version of ABACUS using MPICH. ***********************************************************/ #include "ABACUS.h" //#include "mpi.h" // not needed for Prepare using namespace std; using namespace ABACUS; int main(int argc, char *argv[]) { char whichDSF; DP c_int, L; int N, Nl, DIl, DIr, iKmin, iKmax, paralevel, nr_processors_at_newlevel; DP target_sumrule = 1.0e+6; // effectively deactivated here bool refine = true; // always true for parallel mode DP kBT = 0.0; // dummy if (argc < 12) { // provide some info cout << endl << "Welcome to ABACUS\t(copyright J.-S. Caux)." << endl; cout << endl << "Usage of LiebLin_DSF_MosesState_par_Prepare executable: " << endl; cout << endl << "This function prepares an ABACUS parallel mode run, starting from a preexisting " "serial run (obtained using the LiebLin_DSF executable) using the same model parameters." << endl; cout << endl << "Provide the following arguments:" << endl << endl; cout << "char whichDSF \t\t Which structure factor should be calculated ? Options are: " "d for rho rho, g for psi psi{dagger}, o for psi{dagger} psi" << endl; cout << "DP c_int \t\t Value of the interaction parameter: use positive real values only" << endl; cout << "DP L \t\t\t Length of the system: use positive real values only" << endl; cout << "int N \t\t\t Number of particles: use positive integer values only" << endl; cout << "int Nl \t\t\t Number of particles in left Fermi sea (Nr is then N - Nl)" << endl; cout << "int DIl \t\t shift of left sea as compared to its ground state position" << endl; cout << "int DIr \t\t shift of right sea as compared to its ground state position" << endl; cout << "int iKmin" << endl << "int iKmax \t\t Min and max momentum integers to scan over: " "recommended values: -2*N and 2*N" << endl; cout << "int paralevel" << endl; cout << "rank[i], nr_processors[i] \t rank and nr_processors of each earlier paralevels." << endl; cout << "int nr_processors_at_new_level \t for this new parallelization level." << endl; return(0); } else { // correct nr of arguments int n = 1; whichDSF = *argv[n++]; c_int = atof(argv[n++]); L = atof(argv[n++]); N = atoi(argv[n++]); Nl = atoi(argv[n++]); DIl = atoi(argv[n++]); DIr = atoi(argv[n++]); iKmin = atoi(argv[n++]); iKmax = atoi(argv[n++]); paralevel = atoi(argv[n++]); // paralevel == 1 means that we have one layer of parallelization, so no previous rank and nr_processors to specify if (argc != 12 + 2*(paralevel - 1)) ABACUSerror("Wrong nr of arguments in LiebLin_DSF_MosesState_par_Prepare."); Vect rank_lower_paralevels(paralevel - 1); Vect nr_processors_lower_paralevels(paralevel - 1); for (int i = 0; i < paralevel - 1; ++i) { rank_lower_paralevels[i] = atoi(argv[n++]); nr_processors_lower_paralevels[i] = atoi(argv[n++]); } nr_processors_at_newlevel = atoi(argv[n++]); // Define the Moses state: LiebLin_Bethe_State MosesState (c_int, L, N); // Split the sea: for (int i = 0; i < Nl; ++i) MosesState.Ix2[i] += 2 * DIl; for (int i = Nl; i < N; ++i) MosesState.Ix2[i] += 2 * DIr; MosesState.Compute_All (true); // Handy default name: stringstream defaultScanStatename_strstream; defaultScanStatename_strstream << "Moses_Nl_" << Nl << "_DIl_" << DIl << "_DIr_" << DIr; string defaultScanStatename = defaultScanStatename_strstream.str(); // Split up thread list into chunks, one per processor Prepare_Parallel_Scan_LiebLin (whichDSF, c_int, L, N, iKmin, iKmax, kBT, defaultScanStatename, paralevel, rank_lower_paralevels, nr_processors_lower_paralevels, nr_processors_at_newlevel); } return(0); }