/********************************************************** This software is part of J.-S. Caux's ABACUS library. Copyright (c) J.-S. Caux. ----------------------------------------------------------- File: LiebLin_Fourier_to_x_t.cc Purpose: Fourier transform to spacetime correlator for LiebLin. ***********************************************************/ #include "ABACUS.h" using namespace std; using namespace ABACUS; int main(int argc, char* argv[]) { if (argc != 11) { // provide some info cout << endl << "Welcome to ABACUS\t(copyright J.-S. Caux)." << endl; cout << endl << "Usage of LiebLin_Fourier_to_x_equal_t executable: " << endl; cout << endl << "Provide the following arguments:" << endl << endl; cout << "char whichDSF \t\t Which structure factor ? Options are: " "d for rho rho, g for psi psi{dagger}, o for psi{dagger} psi" << endl; cout << "DP c_int \t\t Value of the interaction parameter" << endl; cout << "DP L \t\t\t Length of the system" << endl; cout << "int N \t\t\t Number of particles" << endl; cout << "int iKmin" << endl << "int iKmax \t\t Min and max momentum integers scanned over" << endl; cout << "RAW file name" << endl; cout << "int Npts_x Number of points in space for the Fourier transform" << endl; cout << "int Npts_t \t Number of points in time for the Fourier transform" << endl; cout << "DP t_max \t Max time to be used" << endl; } else { // (argc == 9), correct nr of arguments char whichDSF = *argv[1]; DP c_int = atof(argv[2]); DP L = atof(argv[3]); int N = atoi(argv[4]); int iKmin = atoi(argv[5]); int iKmax = atoi(argv[6]); char* rawfilename = argv[7]; int Npts_x = atoi(argv[8]); int Npts_t = atoi(argv[9]); DP t_max = atof(argv[10]); ifstream RAW_infile; RAW_infile.open(rawfilename); if (RAW_infile.fail()) { cout << rawfilename << endl; ABACUSerror("Could not open RAW_infile... "); } // Define the output file name: use the RAW file name but with different suffix stringstream SFT_stringstream; string SFT_string; SFT_stringstream << rawfilename << "_xtf_Nx_" << Npts_x << "_Nt_" << Npts_t << "_tmax_" << t_max; SFT_string = SFT_stringstream.str(); const char* SFT_Cstr = SFT_string.c_str(); ofstream SFT_outfile; SFT_outfile.open(SFT_Cstr); if (SFT_outfile.fail()) ABACUSerror("Could not open SFT_outfile... "); DP omega; int iK; DP FF; DP dev; string label; // Define space coordinates: between 0 and L Vect_DP xlattice(Npts_x); for (int i = 0; i < Npts_x; ++i) xlattice[i] = i * L/Npts_x; // Now define time coordinates: between 0 and t_max Vect_DP tlattice(Npts_t); for (int i = 0; i < Npts_t; ++i) tlattice[i] = i * t_max/Npts_t; RecMat > FT(0.0, Npts_x, Npts_t); DP twopioverL = twoPI/L; DP FFsq; complex exp_ik, exp_miomega; while (RAW_infile.peek() != EOF) { RAW_infile >> omega >> iK >> FF >> dev >> label; FFsq = FF * FF; exp_ik = exp(II * (iK * twopioverL)); exp_miomega = exp(-II * omega); for (int ix = 0; ix < Npts_x; ++ix) for (int it = 0; it < Npts_t; ++it) //FT[ix][it] += FF * FF * exp(II * (iK * twopioverL * xlattice[ix] - omega * tlattice[it])); FT[ix][it] = FFsq * pow(exp_ik, xlattice[ix]) * pow(exp_miomega, tlattice[it]); } RAW_infile.close(); // Reset proper normalization: // for (int ix = 0; ix < Npts_x; ++ix) // for (int it = 0; it < Npts_t; ++it) // FT[ix][it] *= twopioverL; // Output to file: for (int ix = 0; ix < Npts_x; ++ix) { if (ix > 0) SFT_outfile << endl; for (int it = 0; it < Npts_t; ++it) SFT_outfile << FT[ix][it] << "\t"; } SFT_outfile.close(); } return(0); }