ABACUS/src/EXECS/LiebLin_DSF_MosesState_par_...

95 lines
3.9 KiB
C++

/**********************************************************
This software is part of J.-S. Caux's ABACUS library.
Copyright (c) J.-S. Caux.
-----------------------------------------------------------
File: LiebLin_DSF_par_Prepare.cc
Purpose: Parallel version of ABACUS using MPICH.
***********************************************************/
#include "ABACUS.h"
//#include "mpi.h" // not needed for Prepare
using namespace ABACUS;
int main(int argc, char *argv[])
{
char whichDSF;
DP c_int, L;
int N, Nl, DIl, DIr, iKmin, iKmax, paralevel, nr_processors_at_newlevel;
DP target_sumrule = 1.0e+6; // effectively deactivated here
bool refine = true; // always true for parallel mode
DP kBT = 0.0; // dummy
if (argc < 12) { // provide some info
cout << endl << "Welcome to ABACUS\t(copyright J.-S. Caux)." << endl;
cout << endl << "Usage of LiebLin_DSF_MosesState_par_Prepare executable: " << endl;
cout << endl << "This function prepares an ABACUS parallel mode run, starting from a preexisting serial run (obtained using the LiebLin_DSF executable) using the same model parameters." << endl;
cout << endl << "Provide the following arguments:" << endl << endl;
cout << "char whichDSF \t\t Which structure factor should be calculated ? Options are: d for rho rho, g for psi psi{dagger}, o for psi{dagger} psi" << endl;
cout << "DP c_int \t\t Value of the interaction parameter: use positive real values only" << endl;
cout << "DP L \t\t\t Length of the system: use positive real values only" << endl;
cout << "int N \t\t\t Number of particles: use positive integer values only" << endl;
cout << "int Nl \t\t\t Number of particles in left Fermi sea (Nr is then N - Nl)" << endl;
cout << "int DIl \t\t shift of left sea as compared to its ground state position" << endl;
cout << "int DIr \t\t shift of right sea as compared to its ground state position" << endl;
cout << "int iKmin" << endl << "int iKmax \t\t Min and max momentum integers to scan over: recommended values: -2*N and 2*N" << endl;
cout << "int paralevel" << endl;
cout << "rank[i], nr_processors[i] \t rank and nr_processors of each earlier paralevels." << endl;
cout << "int nr_processors_at_new_level \t for this new parallelization level." << endl;
return(0);
}
else { // correct nr of arguments
int n = 1;
whichDSF = *argv[n++];
c_int = atof(argv[n++]);
L = atof(argv[n++]);
N = atoi(argv[n++]);
Nl = atoi(argv[n++]);
DIl = atoi(argv[n++]);
DIr = atoi(argv[n++]);
iKmin = atoi(argv[n++]);
iKmax = atoi(argv[n++]);
paralevel = atoi(argv[n++]); // paralevel == 1 means that we have one layer of parallelization, so no previous rank and nr_processors to specify
if (argc != 12 + 2*(paralevel - 1)) ABACUSerror("Wrong nr of arguments in LiebLin_DSF_MosesState_par_Prepare.");
Vect<int> rank_lower_paralevels(paralevel - 1);
Vect<int> nr_processors_lower_paralevels(paralevel - 1);
for (int i = 0; i < paralevel - 1; ++i) {
rank_lower_paralevels[i] = atoi(argv[n++]);
nr_processors_lower_paralevels[i] = atoi(argv[n++]);
}
nr_processors_at_newlevel = atoi(argv[n++]);
// Define the Moses state:
LiebLin_Bethe_State MosesState (c_int, L, N);
// Split the sea:
for (int i = 0; i < Nl; ++i) MosesState.Ix2[i] += 2 * DIl;
for (int i = Nl; i < N; ++i) MosesState.Ix2[i] += 2 * DIr;
MosesState.Compute_All (true);
// Handy default name:
stringstream defaultScanStatename_strstream;
defaultScanStatename_strstream << "Moses_Nl_" << Nl << "_DIl_" << DIl << "_DIr_" << DIr;
string defaultScanStatename = defaultScanStatename_strstream.str();
// Split up thread list into chunks, one per processor
Prepare_Parallel_Scan_LiebLin (whichDSF, c_int, L, N, iKmin, iKmax, kBT, defaultScanStatename, paralevel, rank_lower_paralevels, nr_processors_lower_paralevels, nr_processors_at_newlevel);
}
return(0);
}