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Abstract

In this paper we begin by providing a brief overview of Poincare symmetry,conformal

symmetry and supersymmetry, discussing their algebras and their representations.

We then introduce N = 4 Super Yang-Mills theory, discuss the gauge invariant

operators of this theory and explain what is the planar limit. We compute the

one-loop anomalous dimension for single trace scalar operators and show that the

result we get can be mapped to an SO(6) spin chain. We do the mapping for the

SU(2) sector, where the spin chain is the Heisenberg one, the eigenvalues of which

can be computed by the Bethe equations.
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1 Introduction and Motivation

One of the greatest breakthroughs occurred in theoretical physics in the last twenty years

is the Anti-de Sitter/Conformal Field Theory correspondence, which is a duality relating

a conformal field theory to a string theory. The first and most important example of

an AdS/CFT correspondence was that N=4 Super Yang Mills (SYM) theory is dual to

the type IIB superstring on the AdS5 × S5 background. One important implication of

this is that a string theory can be mapped to a gauge theory and vice versa.

This idea actually is not so strange. Firstly, let’s recall that the first attempt to

understand strong interaction was via string theory. Of course, this idea didn’t work

and today the strong interaction is described with an SU(3) gauge theory, the Quantum

Chromodynamics (QCD). However, some aspects of this, like the flux tubes of the QCD

fields, appear to have an effective description as strings.

But the first realization of an actual correlation between string theories and gauge

theories was made by ’t Hooft. He proposed that a gauge theory (with gauge group

SO(N), SU(N)), in the planar limit, in the large N perturbative expansion, can be

understood as a genus expansion similar to the one that comes from the Feynman

diagrams of string theory. According to this, we can define λ ≡ g2
YMN (gYM is the

coupling constant of the gauge theory) that indicates the number of quantum loops.

In the context of the AdS/CFT correspondence, we have:

1

N
=

gs
4πT 2

, λ = 4π2T 2 (1.1)

Note that gs is the coupling constant of string theory and T is the (effective) tension of

the string.

Let’s see more about these parameters. In particular, if we consider λ� 1, we will

have the weak coupling regime for the gauge theory. We can acquire reliable results based

on conventional treatment of some QFT, e.g. first loop Feynman diagrams calculations

etc. On the other hand, for λ → ∞, gs � 1, we have the strong coupling regime. This

is the region, where the perturbative string theory is applicable. Therefore, we can rely

only on results that are near to this limit.

Exactly at this point, we find the first difficulty of testing the conjecture. It maps

essentially two regions that cannot be tested simultaneously. When we can have credible

data for the one part of the duality, we fail completely in getting insight for the other

one. This is what is called weak/strong coupling duality. The whole situation and the

incompatibility of the two sides are depicted nicely in Figure 1.

A solution to these problem comes from integrability notion. Just by taking the

planar limit (N → ∞) in N=4 SYM, someone can get information for arbitrary λ. So

we can relate and do calculations for different quantities in both theories.
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Figure 1: Parameter phase space and the effective region of each description

2 N = 4 Super Yang-Mills Theory

In order to facilitate the understanding of the symmetry group of N = 4 SYM , its

implications to what we are doing in the present paper, as well as the field content

of N = 4 Super Yang Mills, we will present here some necessary background material

concerning group theory, representation theory and supersymmetry.

The full group of N = 4 SYM is denoted by PSU(2, 2|4) and includes Poincare sym-

metry (Lorentz transformations and translations), conformal symmetry, supersymmetry

and R-symmetry. We begin by discussing the Poincare group.

2.1 Poincare symmetry

The Poincare group is a Lie group consisting of translations and the Lorentz group

(rotations and boosts that leave the Minkowski metric invariant). Its Lie algebra has

10 generators, 6 generators for the SO(1, 3) Lorentz group Jµν (Jµν is antisymmetric in

its indices, hence the 6 independent components) and 4 for the translations Pµ. They

satisfy the following commutation relations:

[Jµν , Jρσ] = i(ηµνJνσ + ηνσJµρ − ηνρJµσ − ηµσJνρ) (2.1)

[Jµν , Pρ] = i(ηµρPν − ηνρPµ), [Pµ, Pν = 0] (2.2)

Since particles correspond to unitary irreducible representations of the Poincare group,

we want to classify the unitary representations of the Poincare group. The Poincare

group is a non-compact group, since the boosts and the translations are specified by

parameters that do not take values on a compact interval (closed and bounded). For a

non-compact group, apart from the trivial representation there is no other unitary finite-

dimensional representation and so the representations have to be labelled by continuous

parameters, which in our case can be the momentum pµ. Then, we have to fix the

non-compact transformations by choosing a specific frame. The group that leaves a
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specific pµ invariant is called the little group. For massive particles we can choose the

frame pµ = (m, 0, 0, 0). In order to classify the irreducible representations, it is useful

to find the Casimir operators, which are members of the Lie algebra which commute

with all other members. For the Poincare group PµP
µ and WµW

µ are the Casimir

operators, where Wµ = 1
2εκνρµJ

κνP ρ is the Pauli-Lubanski vector. Massive particles

can be classified by their spin W 2 = j(j+ 1) and since one component of Wµ commutes

with Pµ, by one of the spin components. So, we can denote the massive particle states as

|pµ, j, j3 >, where for a given j there are 2j + 1 states. For massless particles we choose

pµ = (E, 0, 0, E). The little group now is generated by M1 = J10 + J13, M2 = J20 + J23

and J12. The first two are non compact generators, since J10 and J20 generate boosts,

which means that they will be trivially represented. So, the particle states are labelled

by just one number, the helicity λ which is the eigenvalue of J12 and turns out to be an

integer or a half-integer.

2.2 Conformal Symmetry

We next consider conformal transformations, which are transformations that leave the

metric invariant up to an arbitrary positive spacetime dependent factor. In addition to

the Poincare generators, we have also now the generator of dilatations D and the gener-

ators of the special conformal generators Kµ. These satisfy the following commutation

relations:

[Jµν ,Kρ] = i(ηµρKν − ηνρKµ), [Kµ,Kρ] = 0 (2.3)

[D,Pµ] = iPµ, [D,Kµ] = −iKµ, [D,Jµν ] = 0 (2.4)

[Kµ, Pν ] = −2i(ηµνD − Jµν) (2.5)

In a conformal field theory, local operators transform in irreducible representations of

the conformal algebra. An operator with dimension ∆ satisfies:

[D,O(x)] = i

(
−∆− x ∂

∂x

)
O(x) (2.6)

This means that under a dilatation x → λx, it transforms as O(x) → λ−∆O(λx). We

can consider only the operators at x = 0 and then apply Pµ to shift the position in any

point x. Using the Jacobi identity we can show that Kµ decreases the scaling dimension

by one,while similarly Pµ increases it. Since we are interested in unitary representations,

there has to be a lower bound on the scaling dimension. The fields that satisfy this bound

are given by:

[Kµ,O] = 0 (2.7)

and are called primary fields, whereas the higher dimensional fields created by acting

with Pµ on the primaries are called descendants.

The conformal symmetry determines the form of the two- and three- point functions

up to constants. Since in this paper we only use two-point functions, we will only refer

to them. Lorentz and translation invariance requires that the correlator 〈φ(x1)φ(x2)〉
depends only on (x1 − x2)2. Since the correlator under a scaling transformation trans-

forms as 〈φ(x1)φ(x2)〉 = λ∆1+∆2 〈φ(λx1)φ(λx2)〉, scaling invariance requires moreover
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that the general form of the correlator is:

〈φ(x1)φ(x2)〉 =
C

(x1 − x2)∆1+∆+2
(2.8)

Conformal invariance 〈0|[Kµ, φ1φ2]|0〉 = 0 implies in addition that ∆1 = ∆2. Finally, it

is always possible to diagonalize the constant C in the space of scalar primary operators,

so that the two-point function is zero unless φ2 = φ̄1.

2.3 Supersymmetry

Supersymmetry relates bosons to fermions, since under a supersymmetry transformation

bosonic and fermionic degrees of freedom are exchanged. The supersymmetry algebra is

a graded extension of the Poincare Lie algebra. In addition to the usual generators of the

Poincare algebra, one also considers one or more anticommuting fermionic generators.

Each generator is assigned a grade. Bosonic generators have grade 0, while fermionic

ones have +1. In general a product of fields has as grade the sum of the individual

grades of the fields modulo 2. The commutation relation between two generators with

grades g1 and g2 is given by:

[G1, G2} = G1G2 − (−1)g1g2G2G1 (2.9)

Let us first consider the case of one independent supersymmetry. This means that we

have to add a spinor supercharge Q. We will use Weyl notation and write Qα and

Q̄α̇ for the left-handed and the right-handed spinors respectively. The greek indices α

and α̇ take values 1, 2. As usual, these Weyl spinors transform in the (1
2 , 0) and (0, 1

2)

representations of the Lorentz group. The most general superalgebra for N = 1, where

N is the number of independent supersymmetries is:

{Qα, Q̄α̇} = 2σµαα̇Pµ, {Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 (2.10)

[Qα, J
µν ] = (σµν) βα Qβ, [Q̄α̇, J

µν ] = εα̇β(σ̄µν)βγ̇Q̄
γ̇ (2.11)

[Qα, P
µ] = 0, [Q̄α̇, P

µ] = 0 (2.12)

where σµν = i
4 (σµσ̄ν − σν σ̄µ). In the above expressions, the first line comes from

the fact that the product of a chiral and an antichiral spinor gives rise to a vector.

The second line shows what we have already said, namely that Qα and Qα̇ are chiral

and antichiral spinors respectively. Finally, the third line can be proved using the

Jacobi identity, which should be appropriately modified by replacing commutators with

anticommutators where necessary.

The superalgebra is also invariant under the action of the U(1) group on the charges:

Qα → Q′α = eiaQα, Q̄α̇ → Q̄′α̇ = e−iaQ̄α̇ (2.13)

and the generator of U(1) obeys the following commutation relations:

[Qα, R] = Qα, [Q̄α̇, R] = −Q̄α̇ (2.14)

6



If we now consider more than one independent supersymmetries, we will have Qaα
and Q̄aα̇ spinors and antispinors, where a = 1, 2, ...,N . The commutation relations of the

last two lines after adding the a index will be the same, while the first line will become:

{Qaα, Q̄bβ̇} = 2σµ
αβ̇
Pµδ

a
b , {Qaα, Qbβ} = 0, {Q̄aα̇, Q̄bβ̇} = 0 (2.15)

The superalgebra possesses now the group of automorphisms U(N) (in four spacetime

dimensions), which acts on the charges as:

Qaα → Qa
′
α = RabQ

b
α, Q̄aα̇ → Q̄′aα̇ = Q̄bα̇(R†)ba (2.16)

where Rba are N ×N matrices. This global symmetry of the supersymmetry algebra is

called R-symmetry. For the case N = 4 we are interested in, we will show later that it

is not U(4) but SU(4).

2.3.1 Representations

In analogue to what we did for the Poincare group, we want to find again the irreducible

representations of the superalgebra. These representations are called supermultiplets,

since a given irreducible representation contains various representations of the Lorentz

algebra. This is reasonable since the Lorentz algebra is a subalgebra of the superalgebra.

Before showing how we can construct these representations, we will state some important

facts about them.

Firstly, since P 2 remains a Casimir operator for the superalgebra, the mass of all

states in a multiplet is the same. Secondly, in each representation there is an equal

number of bosonic and fermionic degrees of freedom. We can see that, by studying the

operator: (−1)F , which is defined by its action on the bosonic and fermionic states:

(−)F |b >= |b > (−)F |f >= −|b > (2.17)

Since Q turns a fermionic state to a bosonic one and vice versa we will have: (−1)FQ =

−Q(−1)F . Taking the trace of (−)F {Qα, Q̄α̇} we get:

Tr[(−)F {Qα, Q̄β̇}] = Tr[(−)F (QαQ̄β̇ − Q̄β̇Qα)] = (2.18)

= Tr[−Qα(−)F Q̄β̇ +Qα(−)F Q̄β̇] = 0 = 2σµ
αβ̇

Tr[(−)FPµ] (2.19)

Now, since Tr[(−)F ] is the difference between the number of bosons and fermions in a

given supermultiplet we see that for fixed non-zero momentum Tr[(−)F ] = nB−nF = 0.

Massless supermultiplets Following the same procedure we followed for the Poincare

group, we go to the frame pµ = (E, 0, 0, E). The states will be again labelled by the

momentum pµ and the helicity λ. In this frame from 2.10 we get:

{Qaα, Q̄bβ̇} = 2δabσ
µ

αβ̇
Pµ = 2δabE(−σ0 + σ3)αβ̇ = 4δabE

[
1 0

0 0

]
(2.20)
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We see therefore that for α = β̇ = 2:

{Qa2, Q̇b2̇} = 0 (2.21)

and thus if we act on a state |pµ, λ〉 we see that Qa2|pµ, λ 〉 = 0 = Q̄a2|pµ, λ 〉 = for all

a. For the second component of the spinors we get from 2.20 {Q1, Q̄2} = 4E. This

indicates that we can define creation and annihilation operators:

ab =
Qb2

2
√
E
, a†b =

Q̄b1̇
2
√
E

(2.22)

so that they satisfy the algebra of fermionic creation and annihilation operators:

{ab, a†c} = δbc {ab, ac} = {a†b, a
†
c} = 0 (2.23)

Let us first focus on the case of simple supersymmetry. Then we can build the repre-

sentation by starting from a state for which J12|pµ, λ 〉 = λ|pµ, λ 〉 and which satisfies:

a|pµ, λ 〉 = 0. We then act on it with a†. From the commutation relation [J12, Q̄1̇] = 1
2Q̄1̇

we see that J12Q̄1̇|pµ, λ 〉 = (λ+ 1
2)Q̄1̇|pµ, λ 〉, which means that a† raises the helicity by

1
2 . Because also the new state will be annihilated by a†, we conclude that the multiplet

will consist of the two particle states:

|pµ, λ 〉 , |pµ, λ+
1

2
〉 (2.24)

If we want to have CPT invariance and since parity changes the sign of the helicity, we

have to add to the above multiplet its CPT conjugate:

|pµ,−λ 〉 , |pµ,−λ− 1

2
〉 (2.25)

Some examples of supermultiplets that we will refer to in the next section are the scalar

multiplet, which has two states with λ = 0 and the pair λ = ±1
2 and corresponds to

a complex scalar and a chiral fermion, and the vector multiplet, which is constructed

from λ = 1
2 and has the degrees of freedom of a gauge boson and a chiral fermion.

If we consider the case of extended supersymmetry, we have N creation operators

and starting with a given state, we can construct 2N states.

Massive Supermultiplets Let us consider now massive representations. Again, we

go to the reference frame pµ = (m, 0, 0, 0). Particle states will be again represented by

|pµ, s, s3 >. Now, the anticommutation relation between the charges is

{Qaα, Q̄bβ̇} = 2mδab (σ0)αβ̇ = 2mδab

[
1 0

0 0

]
(2.26)

We have twice the number of creation and annihilation operators:

abα =
Qbα√
2m

, (a†)aα̇ =
Q̄aα̇√
2m

(2.27)
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and so starting from a state with a given spin, we can create 22N different states.

2.3.2 Superfields

Our goal is to find Lagrangians that are invariant under supersymmetry. We , therefore,

have to consider how supersymmetry is represented on the fields that create the particles.

We will present here the N = 1 case, in order to illustrate how supersymmetry works.

From the construction of the supermultiplets we can infer that there will be both bosonic

and fermionic fields, and that the variation of a scalar field will give rise to a spinor field

and vice versa. A very detailed constructive approach, starting from the variations of the

fields, proceeding to the action of free fields and then introducing the interactions can

be found in [3]. We will instead present a different method to find the supersymmetric

action corresponding to a particular supermultiplet, which is much more easier and

elegant.

In ordinary quantum field theories, we have fields defined on Minkowskian space-

time and an action that is invariant under Poincare transformations. Now, we can

consider a generalization of normal fields to superfields, which in addition to the space-

time coordinates depend also on fermionic coordinates θα and θ̄α̇. This new space is

called superspace, is denoted by R4|4 and its coordinates are: zA = (xµ, θα, θ̄α̇). These

superfields contain now the various fields that are mapped to each other under the su-

persymmetry transformations.

A generic element of the supersymmetry group will be written as:

G(x, θ, θ̄) = e−ixµP
µ+iθαQα+iθ̄α̇Q̄

α̇
(2.28)

This can be used to find how supercoordinates are changed under a supersymmetry

transformation:

(xµ, θ, θ̄)→ (xµ + iθσµε̄− iεσµθ̄, θ + ε, θ̄ + ε̄) (2.29)

As for the usual fields, the action of the group on the superfields will be defined through

a differential representation of the generators. So, one can find (see [1] for example)

that the charges Q and Q̄ are represented by the following operators:

Qα =
∂

∂θα
− iσµαα̇θ̄

α̇∂µ, (2.30)

Q̄α̇ =
∂

∂θ̄α̇
− iθασµαα̇∂µ (2.31)

The most general superfield can be written as:

F (x, θ, θ̄) = f1(x)+θf2(x)+θ̄f̄3(x)+θ2f4(x)+θ̄2f5(x)+θσµθ̄f6
µ+θ2θ̄f̄7+θ̄2θf8(x)+θ2θ̄2f9(x)

(2.32)

where f1(x), f4(x), f (5), f9(x) are scalars,f2(x), f8(x) are left-handed Weyl spinors,

f3(x), f7(x) are right-handed Weyl spinors and f6(x) is a vector field. We see that

we have an equal amount of bosonic and fermionic degrees of freedom, so the superfield

forms a representation of the superalgebra. The transformation of the component fields
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can be derived by acting on the superfield F with the operators Q and Q̄:

δε,ε̄F = (εQ+ ε̄Q̄)F (2.33)

The variation of the superfield is of course a superfield itself, and thus by comparing

terms with the same power of the fermionic coordinates we can get the variation of the

component fields.

These representations are in general reducible. In the particular case of N = 1

they are always reducible since due to the larger number of degrees of freedom, the

component fields do not fit into the N = 1 supermultiplets we studied in the previous

section. Therefore, we will have to put constraints on the superfields.

Chiral superfield It is important to find conditions, that will lead to superfields,

which under a supersymmetry transformation remain of the same type. The first exam-

ple we will study is the chiral superfield, which is determined by the condition:

D̄α̇Φ(x, θ, θ̄) = 0 (2.34)

where D̄α̇ = − ∂
∂θ̄α̇
− iθασµαα̇∂µ. This constraint leads to:

Φ(x, θ, θ̄) = φ(x)+iθσµθ̄∂µφ(x)+
1

4
θ2θ̄2∂ρ∂

ρφ(x)+
√

2θψ(x)− i√
2
θ2∂µψ(x)σµθ̄+θ2F (x)

(2.35)

We see that we have a complex scalar field φ, a left-handed Weyl spinor ψ and an auxil-

iary complex scalar F , which helps balance the degrees of freedom off-shell. Remember

a complex scalar has two bosonic degrees of freedom and a Weyl spinor has 4 off-shell.

Thus, we need an auxiliary complex scalar field. However, when we will construct an

action for the chiral superfield, F will turn out to be non-dynamical, as it should. To

sum up we see that we got a superfield that corresponds to the chiral multiplet.

The next step is to find an action that will describe this multiplet. In general we

want to find Lagrangians that are invariant under a supersymmetry transformation up

to a total derivative. If we compute the variations in 2.33 we see that the only variation

that is a total derivative is that of the θ2θ̄2 term:

δε,ε̄f
9 =

i

2
εσµ∂µf̄

7 − i

2
∂µf

8σµε̄ (2.36)

So, using the usual laws for integration of Grassmann variables we could define an action:

S =

∫
d4xd2θd2θ̄F (2.37)

which is automatically invariant under supersymmetry, since the integration keeps only

the component f9. It turns out due to dimensional reasons that for chiral superfields

the only possibility for F (x, θ, θ̄) is1 F = Φ†Φ and the Lagrangian is therefore:

L =

∫
d2θd2θ̄ =

∫
d4x(∂µφ∂µφ

∗ − iψ̄σ̄µ∂µψ + ff∗) (2.38)

1The antichiral field is similarly defined as the superfield satisfying DαΦ† =(
− ∂
∂θα

+ iσµαα̇θ̄
α̇∂µ

)
Φ† = 0
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We should note here that the superfield W = −m
2 Φ2 + g

2Φ3 has also a component which

transforms as a total derivative (specifically its θ2 term) and so we could add to our

Lagrangian a corresponding term.

Vector Superfield The next superfield we will consider is the real or vector superfield,

which is obtained by the condition:

V (x, θ, θ̄) = V †(x, θ, θ̄) (2.39)

This condition leads to

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θ2(M(x) + iN(x))− i

2
θ2(M(x)− iN(x))−

−θσµθ̄Aµ(x) + iθθ̄2

(
λ̄(x) +

i

2
σ̄µ∂µχ(x)

)
− iθ̄2θ

(
λ(x) +

i

2
σµ∂µχ(x)

)
+ (2.40)

+
1

2
θ2θ̄2

(
D(x) + +

1

2
∂ρ∂

ρC(x)

)
Since, we have now the vector field Aµ, we expect gauge symmetry to appear.

Let us look at the kinetic term K = Φ̄Φ. This is invariant under Φ → eiαΦ and

Φ̄ → e−iαΦ†. We can turn this global symmetry to a local one, by promoting α to a

chiral field Λ. We see then that as we expected K → Φ̄e−iΛ̄eiΛΦ, and is therefore not

invariant, but as in the non-supersymmetric case we have to introduce a connection. We

introduce therefore a real superfield V, which transforms as

eV → eiΛ̄eV e−iΛ (2.41)

and write the kinetic term as Φ̄eV Φ.

Abelian case For the simple case of an abelian superfield, the transformation law

of the vector field simply becomes V → V − i(Λ − Λ̄). This can be used in order to

eliminate some of the fields of the vector superfield, and leave only those that describe

the degrees of freedom of the vector multiplet.

Before discussing the non-abelian case, which is of interest for us, we will briefly

discuss Non-Abelian gauge theories.

Non-Abelian gauge theory Let us consider a set of fields φi which transform in

a certain representation of a non-abelian Lie group. The representation might be the

fundamental one, which for groups such as U(N) or SU(N) means that the the fields

can be considered as elements of a N-dimensional vector space on which the group

acts in the following way: φj(x) → φj(x) = U jk(x)φk(x) =
(
eiα

a(x)Ta
)j
k
φk(x). Another

representation which is the one we will have in the N = 4 SYM is the adjoint one,

where the field can be written as Φ = ΦaTa. So the field is now composed of matrices

transforming as:

Φi
j ≡ Φa(Ta)

i
j → Φi

j =
(
eiα

bT b
)i
k

Φa(Ta)
k
l

(
e−iα

cTc
)l
j

(2.42)

11



The covariant derivative is DµΦ = ∂µΦ+ i[Aµ,Φ], the field strength is Fµν = −i[Dµ, Dν ]

and the kinetic term for the gauge field will be expressed as a trace of FµνF
µν .

Non-abelian case In order to write an action for the vector multiplet degrees of

freedom, V is not a good choice, since we would want to have a superfield that under

the gauge group transforms as

V → eiΛVe−iΛ (2.43)

in order to be able to build gauge invariant quantities by taking traces.

It turns out that such a field is

Wα = −1

4
D̄D̄

(
e−VDαe

V
)

(2.44)

which contains also the field strength. The transformation property 2.43 means that the

component fields are in the adjoint represention of the gauge group. At this point, we also

need to mention that all fields in a given multiplet will transform in the same way under

the action of the gauge group, since gauge symmetry commutes with supersymmetry. If

this was not the case, then supersymmetry would have to be local too.

2.4 N = 4 SYM

It’s finally time to introduce the N = 4 Supersymmetric Yang-Mills Theory. As the

name suggests we have now N = 4 independent supersymmetries. We want to restrict

our theory to particles with spin ≤ 1, in order not to have gravity. This means that

we have to consider only massless supermultiplets, since in that case there are only 4

creation operators, and so starting with helicity -1 we will have a multiplet with 1 state

with λ = −1, four states with λ = −1
2 , 6 six states with λ = 0, four states with λ = 1

2

and one state with λ = 1. It is clear that we have the maximum allowed supersymmetry

for a multiplet with λ ≤ 1. This is why theories withN = 4 in four spacetime dimensions

are called maximally supersymmetric. The multiplet we constructed shows that we will

have a gauge field, the degrees of freedom of which will correspond to the λ±1 states, 6

real scalars corresponding to λ = 0 and 4 Weyl fermions corresponding to λ = ±1
2 . All

fields transform in the adjoint representation of the SU(N) gauge group. As we already

said, this means that we can write them as ΦI = ΦI
aT

a, Aµ = AaµT
a, Ψ = ΨaT a, where

T a are the generators of the gauge group, and are N ×N traceless, Hermitian matrices

satisfying the su(N) lie algebra and are normalized as Tr(T aT b) = 1
2δ
ab. The action of

N = 4 SYM is:

S =

∫
d4x(−1

4
TrFµνF

µν +
1

2
TrDµφID

µφI −
g2

YM

2

∑
I<J

Tr[φI , φJ ]2+ (2.45)

+Trψ̄aσµDµψa −
igYM

2
Trσabi ψa[Φ

I , ψb]−
igYM

2
Trσiabψ̄[ΦI , ψ̄

b]) (2.46)

As we discussed in a previous section, there is also a global R-symmetry SU(4),

which rotates the 6 scalars to one another. From the previous section we would expect

that this symmetry is U(4), but it is SU(4). This happens because, if we write U(4) =

U(1) × SU(4), we see that the generator of the U(1) in four spacetime dimensions
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commutes with the whole algebra and so is trivially realized (in other words is zero).

Before discussing about symmetries again, it would be useful to discuss why one

studies this theory. Firstly, it has a large amount of symmetry which makes possible the

analytical calculation of many physical quantities. An obvious reason is also that it is

used in the context of the AdS/CFT correspondence and specifically the first example

of such a duality was between N=4 SYM and type IIB string theory on AdS5 × S5.

Perhaps, the most important aspect is that N = 4 SYM is conformally invariant and

retains this property also in the quantum level, since it has been shown that the β

function is zero to all orders in perturbation theory.

2.5 Superconformal algebra

In this section we will combine the supersymmetry of N = 4 with the conformal symme-

try which also carries, in order to get a superconformal algebra. As we already said the

complete symmetry group of N = 4 SYM is PSU(2, 2|4) and its corresponding algebra

is psu(2, 2|4). So far, we saw the bosonic generators of the conformal group Jµν , Pµ,Kµ

and D and the supercharges Qaα and Q̄aα̇, which are the superpartners of Pµ. Now, in

order to ensure closure of the algebra we have to consider further supercharges Saα and

Saα̇ which are the superpartners of Kµ. The whole superconformal algebra can be found

for example in [1]. Here we will write some commutation relations of importance:

[Qaα,K
µ] = iσµαα̇S̄

aα̇, [Q̄aα̇,K
µ] = −εα̇β̇(σ̄µ)β̇αSaα (2.47)

{Saα, S̄bβ̇} = 2σµ
αβ̇
Kµδ

b
a, {Saα, Sbβ} = {S̄aα̇, S̄bβ̇} = 0, [Saα,Kµ] = [S̄aα̇,K

µ] = 0 (2.48)

{Qaα, Sβb} = εαβ(δabD +Rab ) +
1

2
δabJµν(σµν)αβ (2.49)

where Rba are the R-symmetry generators.

2.5.1 Representations of the superconformal algebra

We consider again local operators O(x) composed by the elementary fields of our theory.

As usual these operators can be characterized by their dimension ∆ and their spin Jµν :

[D,O(0)] = −i∆O(0), [Jµν ,O] = −JµνO(0) (2.50)

Similarly with what we did with the generators Kµ and Pµ, we can get from the com-

mutation relations that Saα lowers the conformal dimension of an operator O(0) by 1/2.

Therefore, due to unitarity, there is again a lower bound and there are some operators

that satisfy:

[Saα,O(0)] = [S̄α̇a,O(0)] = 0 (2.51)

for all α, α̇, a. These operators are called superconformal primaries and have the lowest

dimension in a given supermultiplet. As the name suggests, they are alco conformal

primaries, but the inverse is not always true. A superconformal operator along with its

descendants, which are constructed by acting on the superconformal primary with the

generators, makes up an irreducible representation of psu(2, 2|4). In fact, the supercon-

formal primaries are in one to one correspondence with the irreducible representations
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of psu(2, 2|4). Since the group is non-compact these representations are infinite dimen-

sional. For reasons that will appear shortly, we will be interested in a subset of these

superconformal primaries, called chiral primaries. These operators in addition to 2.51

satisfy also:

[Qaα,O(0)] = 0 (2.52)

for at least one α, a. So, the representations which correspond to these operators,

are ”smaller”, though still infinite of course. The R-symmetry group SU(4) ' SO(6)

has three generators that commute with all its other generators. This means that we

can classify the operators in addition to their spin and conformal dimension with three

numbers related to the R-symmetry group, the R-charges. It turns out[5] that we

need only consider operators with (J, 0, 0) R-numbers and that for chiral primaries the

conformal dimension equals the number J. We can now show that the reason why we are

interested in these operators is that they have anomalous dimension zero. In general,

when we go to the quantum theory the dimension of the operators will get corrected by

a quantity called anomalous dimension, which depends on the coupling gYM . Within

a given supermultiplet, all operators have the same anomalous dimension, since the

generators can change the dimension by 1/2. An example can help us understand this

better. If an operator has bare dimension ∆0 and another one has bare dimension

∆0 + 1
2 , the anomalous dimension they get cannot be different, since these two operators

are connected by the action of Saα, which raises the dimension by 1/2. Morover, by

studying 2.49

0 = [{S,Q},O(x)] = [J +D +R,O(0)] ∼ (∆ +R+ J )O (2.53)

we see that the conformal dimension is a function of the spin and the R-charges. The

spin certainly does not change by varying the coupling, while the same holds for the

R-symmetry charges, since they are quantized numbers.

2.6 Gauge invariant operators

Moving on to our theory, we should only consider gauge invariant operators, since these

correspond to physical observables. As, we showed earlier, the fields will transform in

the adjoint representation of the gauge group, which means that:

W → UWU−1 (2.54)

where by W we collectively refer to the fields. So, it clear that in order to have gauge

invariant operators we have to consider traces of the elementary fields, since then under

a gauge transformation using the cyclicity of the trace we can easily see that these are

gauge invariant. More specifically, we will consider single trace operators, which are

operators of the form:

O(x) = Tr(χ1(x)χ2(x)...χL(x)) (2.55)

where χI(x) can be any of the component fields of N = 4 SYM. We could also consider

operators which are products of traces but it turns out that in the large N limit, all

information is in the single trace operators.
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2.7 Planar limit

In 1974, ’t Hooft noticed that non-abelian gauge theories become considerably simplier

if we take the number of colors N to infinity2. This limit is particularly useful in the

context of the AdS/CFT correspondence. To illustrate its relevance to our paper we

consider a toy model resembling Yang-Mills theory, with only a single scalar field φ. In

particular we consider the field transforming in the adjoint representation of the gauge

group SU(N):

φ = φaTa → φij = φa(Ta)
i
j (2.56)

and we have a Lagrangian with a quartic vertex proportional to the coupling constant

square g2 and a cubic vertex proportional to g:

L = −1

2
Tr(∂µφ∂

µφ) + gTr(φ3) + g2Tr(φ4) = (2.57)

L =
1

g2

[
−1

2
Tr(∂µφ̃∂

µφ̃) + Tr(φ3) + Tr(φ̃4)

]
(2.58)

where in the second line we rescaled our field: φ̃ = gφ.

A consistent way to take the N →∞ limit, is to define the ’t Hooft coupling λ ≡ g2N

which is to remain constant when N → ∞. From 2.58 it seems that this limit is not

well defined, but we have to keep in mind that the number of components of the fields

goes to ∞ as well, and it turns out that these two divergences cancel out.

As we can see from the Lagrangian each vertex contributes a factor of 1/g2 = N/λ,

a propagator being the inverse of the kinetic term scales as g2 = λ/N , while each loop

gives a factor of N which comes from the sum over the color indices. Therefore, a

Feynman diagram with V vertices, E propagators and L loops is proportional to:

NV−E+LλE−V = NχλE−V = N2−2gλE−V (2.59)

where χ is the Euler characteristic and g is the genus, where these quantities make sense

if we consider the Feynman diagrams as surfaces.

The propagator of the field φ is:

〈
φ̃ij(x)φ̃kl (y)

〉
= δilδ

k
j

g2

4π2(x− y)2
(2.60)

This can be seen using the completeness relation the generators satisfy3
∑N2

a=1(Ta)
i
j(Ta)

k
l =

δilδ
k
j . Equation 2.60 indicates that we can use the so-called double line notation.

Figure 2: Double line notation

Two characteristic examples of feynman diagrams are shown in Figure 3. The first

2In QCD, where we have the gauge group SU(3), we say that there are 3 colors. Similarly, in a
SU(N) gauge theory we say that we have N colours.

3For the feynman rules for NxN matrix fields see for example Srednicki chapter 80
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(a) (b)

Figure 3

one has V = 2, E = 3, L = 3 and the second one V = 4, E = 6, F = 2. To understand

why we have these numbers of closed loops, just follow the arrows. The left diagram has

genus zero and scales as N2, while the right one has genus one and scales as N0. These

examples help us understand that physical quantities can be expressed as expansions in

the genus. Take for example the generating functional:

iW =
∞∑
g=0

N2−2g
∞∑
l=0

cg,jλ
j =

∞∑
g=0

N2−2gfg(λ) (2.61)

We observe, therefore, that in the large N limit, diagrams with genus zero will contribute

much more that the rest. These diagrams are called planar diagrams and can be drawn

in the plane without any lines crossing.

3 One-loop anomalous dimension for single trace scalar

operators

At this section, we are going from tree level to one loop diagrams. Through this, we

will calculate the corresponding anomalous dimension. In particular, we start from the

general expression of the two point function:

〈O(x)O(y)〉 ≈ 1

|x− y|2∆
(3.1)

We denoted ∆ = ∆0 + γ, where ∆0 is the bare dimension of the field and γ is the

anomalous dimension. The approximation symbol comes from the fact that we consider

up to a specific quantum correction order. Renormalizing 3.1, the general form of the

two point function becomes:

〈O(x)O(y)〉 ≈ 1

|x− y|2∆0
(1− γln

(
Λ2|x− y|2

)
) (3.2)

We set a UV cut-off Λ and we see that we have a logarithmic divergene, which is

typical for one-loop corrections. So, the next task is to calculate the explicit relation for

the anomalous dimension. Before going there, we must set the rules of the game, that

is how to calculate tree level diagrams.

We will start from chiral primaries and then generalize to arbitrary gauge invariant

operators. Also we need to take the planar limit, that is N →∞, so that computations

become considerably easier-as it will be shown shortly. As an example of a chiral primary
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we can consider:

ΨL =
(4π)L/2√
LNL/2

TrZL =
(4π)L/2√
LNL/2

ZABZ
B
C ...Z

...
A (3.3)

where Z = 1√
2
(φ1 + iφ2) is a complex scalar field, composed by two of the real fields

of N = 4 SYM. Since, the fields are represented by N ×N traceless matrices, the non-

trivial chiral primaries have L ≥ 2. When we have a general 2-point-function between a

ΨL(x) and ΨL(y), we start by Wick contracting the different Z’s and using:

〈ZAB(x)ZCD(y)〉 =
δADδ

C
B

4π2|x− y|2
(3.4)

Thus, the procedure of calculating the two-point function of two chiral primaries

isn’t difficult conceptually. But as we can have different combinations in contractions

and probably L� 1, we understand that we will end up with a pretty nasty calculation.

However, having considered the planar limit, this calculation turns out to be much easier.

We will sketch out the calculation for L = 3 and we will see that this is easily generalized

to an arbitrary L. So, we have essentially a calculation of the following form:

〈ZABZBC. . .
ZCA (x)ZA

′
C′Z

C′
B′. . .
ZB

′
A′ (y)〉 (3.5)

Moreover, we choose to contract indices as indicated by the underline in the expres-

sion. Using 3.4, considering δaa = N , it’s easy to see that this gives N3. Although apart

from this, another choice could be to contract the 3rd with the 5th, the 2nd with the 6th

etc. This will give also N3. We have totally 3 different choices that give this result,But

there are also other kind of contractions. Their contribution is however is N. And as we

have chosen the planar limit, these contributions are considered subleading. The graphs

that correspond to the contractions we descibed are called planar graphs.

Figure 4: Planar Figure 5: Planar Figure 6: Non planar

It is not difficult to generalize this result to L different sites. Again there will be

L different contractions which will give NL. Actually the argument for planar graphs

stands only when L� N . But as we take large N limit, this isn’t so restrictive. Bearing

all these in mind and using the general expression for the chiral primaries(with the

normalization constants) we get:

〈ΨL(x)ΨL(y)〉 =
LNL

(
√
LNL/2)2|x− y|2L

=
1

|x− y|2L
(3.6)
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Up until now, we considered only chiral primaries. But we can as well generalize for

any scalar field (CI1,...,IL is a symmetry factor):

OI1,I2,..,IL(x) =
((4π)L/2)√
CI1,...,ILN

L/2
Tr
(
φI1φI2 ...φIk

)
(3.7)

So if we go to calculate the -tree level- point function as for the color indices the

procedure is the same. But we need to consider the additional index Ii (let’s call them

flavours, in analogy with QCD!). Contracting these fields, by demanding to have the

same kind of field for non-zero contribution:

〈OI1,I2,..,IL(x)OJ1,...,Jk(y)〉tree =
1

CI1,...,IL

(
δJ1I1 δ

J2
I2
...+ cycles

) 1

|x− y|2L
(3.8)

The cycles in this expression come from the fact that we can contract the indices in

different ways, but again in order to keep only the planar graphs, we can take all the

cyclic permutations between the Ii and Jj .

Having explained the correlator for the tree level, we now go on to one loop. The tree

level correlators can be extracted just by using the symmetries. But for the corrections,

we need to take a look at the action. We will show explicitly how the scalar terms of

the action contribute to the anomalous dimension, even though other terms contribute

as well. After having this result, we will explain how this result is applicable to the rest

of the terms. We consider, therefore, :

Sbos =
g2
YM

2

∫
d4x
{1

2
TrF + TrDµφIDµφI −

1

2

∑
I<J

Tr[φI , φJ ]2
}

(3.9)

We see that we have 2 kind of interactions. The first comes from the interaction

between the scalars and the gauge boson (from the covariant derivative term) and the

second is the interaction between the 4 scalar fields. At this work, we are interested

only in the latter. We will comment later for the other term. So the last term is:

g2
YM

4

∫ [
d4x

∑
I,J

Tr(φIφIφJφJ)− Tr(φIφJφIφJ)
]

(3.10)

Doing this, we added an interaction vertex in terms of diagrams. So we need to

calculate the action in the correlator. To do so, we need to take the S-matrix. We need

to do again the contractions etc. As we have 4 fields in the interaction vertex, we should

contract them with 2 ingoing and 2 outgoing fields. Moreover, as we take the planar

limit, both the two ingoing and two outgoing fields must be neighbouring (if that’s not

the case, the contractions will necessarily lead to non-planar graphs, see Figure 7). So,

the subcorrelator is (we refer to subcorrelator, as we need to do the same procedure for

every field/site of the state):

〈(φIkφIk+1
)AC(x))

(
ig2
YM

4

∫
d4z

∑
I,J

(Tr(φIφIφJφJ)(z)− Tr(φIφJφIφJ)(z))

)
(φJkφJk+1)C

′
A′(y)〉

(3.11)
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Figure 7: Diagrams with the introduction of the quarctic interaction. The graph (a)
describes a planar diagram, while graph (b)depicts a non-planar interacting diagram

We have two terms in the interaction vertex. These need to be contracted with the

state fields. Due to the planar limit, the contractions must be with subsequent fields.

For instance, we can contract φIk+1
with the second field but this means that φIk must

go with the third one. So we understand that the first term in the interaction vertex

has two choices. Either relates the incoming with the outcoming states or contracts an

incoming with an incoming and an outcoming with an outcoming. On the other hand,

the second term can only relate incoming to outgoing ones. Therefore (3.11) becomes

i
N

(4π2)2
δAA′δ

C
C′
g2
YMN

64π4

(
2δJkIk δ

Jk+1

Ik+1
+ 2δIk,Ik+1δ

Jk,Jk+1 − 4δ
Jk+1

Ik
δJkIk+1

)∫
d4z

|z − x|4|z − y|4
(3.12)

The additional factor N came from the color summation in the interaction vertex.

Next step is to calculate the integral of z. This is essentially UV divergent for z →
x, y. Note that someone usually calculates loop integrals in momentum space and the

divergence becomes evident there. Now we are working in the position space and the UV

divergence arises when z approaches the singular points. But in our case, it is convenient

working on the position space, as we have defined all of the fields in specific positions

(local fields). A common practice we do to combat UV divergences is to set some UV

limit Λ. So we will have a low limit at Λ−1, as we are in the position space. Another

step is to do a Wick rotation (dz → idzE). If we want to express the cut-off condition,

it is |zE − x| ≥ Λ−1, |zE − y| ≥ Λ−1 According to what we told about the divergence, it

makes sense to consider the main contribution to the integral to come from the regions

near the singular points. So based on this claim, we are going to perform a nasty trick

(admittedly!) to get an approximation of the result. Consider ξ = |z − x| and ξ ≈ 0 (z

is near x). This will mean that |z − y| ≈ |x − y| (As our initial consideration was that

z and x are almost coincident). We need to define the new limits of the integral. So

we said that we have a lower cut-off at Λ−1. In order to find the upper limit we return

again to the claim that the highest contribution comes near the two points x,y. We

took as starting point somewhere near x. So the alleged infinity for z will be at z∞=y.

19



Therefore ξup = |y − x|. The integral becomes:

i

∫
d4zE

|z − x|4|z − y|4
≈ 2i

|x− y|4

∫ |x−y|
Λ−1

dξΩ3

ξ
=

π2i

|x− y|4
ln
(

Λ2|x− y|2
)

(3.13)

So the final result for the subcorrelator is:

−
NδAA′δ

C
C′

(4π2)2|x− y|4
λ

16π2

(
δJkIk δ

Jk+1

Ik+1
+ δIk,Ik+1δ

Jk,Jk+1 − 2δ
Jk+1

Ik
δJkIk+1

)
(3.14)

Up to now, we were interested in the interaction term between the 4 scalars. But

there are also the other term that couple scalar with the gauge field. Given that we

consider the external states (ingoing and outgoing) consisting solely by scalar fields.

Moreover, we can have other terms coming either from the gluon exchange (again an

analogy from QCD, we are talking for the gauge boson) or from fermion loops. As the

gluon carries no R-charge and the fermion loops are essentially self-energy diagrams, we

understand that the external states-compared to the tree level- won’t change at all and

every change will occur internally. Then we can assign for these diagrams an additional

parameter that bears resemblance with the first one of the previous result. We define

also a constant C, which we will determine shortly. These diagrams are:

Figure 8: Planar graphs originated from the coupling of scalar and gauge field. The
exterior flavor structure remains the same. (a) gluon exchange between neighbouring
fields (b)Scalar self energy from a gluon (c) Scalar self energy from a fermion loop

Generalizing for the whole correlator we need to use what we extracted before.

Moreover, we need to perform the summation for the whole array of operators. Finally

we add an additional term for the cycles. This comes from the fact that we can have

L planar diagrams, as we can contract a site with L different for the conjugate (but as

soon as we determine the first contraction, the other fields have no choice). In total:

〈OI1,..,IL(x)OJ1,...,JL(y)〉O.L. =
λ

16π2

ln
(
Λ2|x− y|2

)
|x− y|2L

×

×
L∑
l=1

(2Pl,l+1 −Kl,l+1 − 1 + C)
1√

CI1 ..CILCJ1 ..CJL
δJ1I1 δ

J2
I2
...δJLIL + cycles

What we did now is nothing but rearranging and relabelling of what we have written

up to now. So the new terms we introduced have the following properties:

Pl,l+1δ
J1
I1
δJ2I2 ...δ

JL
IL

= δJ1I1 ...δIl
Jl+1δJlIl+1

...δJLIL (3.15)

Kl,l+1δ
J1
I1
δJ2I2 ...δ

JL
IL

= δJ1I1 ...δIl,Il+1
δJl,Jl+1 ...δJLIL (3.16)
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Combining the tree level and one loop result we aqcuired:

〈OI1,.,IL(x)OJ1,.,JL(y)〉 =
1

|x− y|2L

(
1−

λln
(

Λ2|x− y|2
)

16π2

L∑
l=1

(
2Pl,l+1−Kl,l+1−1+C

))
δJ1I1 ..δ

JL
IL

+ccl

(3.17)

Comparing this result with the initial general expansion of the correlator, we can

understand that the second term is the anomalous dimension. If we want to express it

as an operator in analogy with the dilatation operator:

Γ =
λ

16π2

L∑
l=1

(
2Pl,l+1 −Kl,l+1 − 1 + C

)
(3.18)

We need to define the value of C. To do so, we will return to the chiral primary, the case

we studied in the beginning of this section. Its simplicity and the fact that they don’t

have anomalous dimension is extremely helpful and make our calculation simple. Thus

the chiral primary has only Z fields in its trace and therefore any interchange of Z gives

essentially the same result, Pl,l+1ΨL = ΨL. Also as it has also Z and not Z̄ffl it cannot

interchange flavor with itself (you need a Z and Z̄ for this), Kl,l+1ΨL = 0. With these

properties and acting with the anomalous dimension operator on a chiral primary, we

get:

ΓΨL =
λ

16π2

L∑
l=1

(
2− 1 + C

)
ΨL (3.19)

Last step is to use the fact that the chiral primaries have no anomalous dimension. So

we understand that we need to have C = −1.

We have determined the anomalous dimension. Let’s see the result more abstractly.

In general, we can map the operators we studied, the single-trace operators, to a tensor

product of different Hilbert spaces.

V1 ⊗ V2 ⊗ ...⊗ VL (3.20)

Due to the cyclicity property of the trace, the theory is invariant under the shift:

V1 ⊗ V2 ⊗ ...⊗ VL → VL ⊗ V1 ⊗ ..⊗ VL−1 (3.21)

Another property is that the operator is Hermitian. These are some indications

that we can map the anomalous dimension to the energy spectrum of a spin chain. We

studied only the scalar field behaviour (we will explain shortly the sub-sector of the

whole theory). But we can generalize and conjecture that the planar N=4 SYM is

mapped fully to a psu(2,2|4) spin chain:

This is the novel thing! We started working on N=4 SYM and the final result ended

up being a calculation on a spin chain. The importance of this result isn’t just the

elegance of mapping two completely different theories to each other and therefore that

we can see something with a new perspective. It is an additional computational comfort.

As we know, a spin chain system is integrable and therefore we can solve it analytically.

If we see the result we aqcuired for the anomalous dimension operator, we understand

that we need to solve this for any spin site, which from a first glance seems a (very very)
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Table 1: Dictionary of the two theories

Planar N=4 SYM psu(2,2|4) spin chain

Single-trace operators Cyclic spin chain

Field Spin site

Anomalous dilatation operator Hamiltonian

Anomalous dimension Energy

Cyclic constraint Zero-momentum condition

long calculation if we take a considerably large number of fields in the trace. But via

integrability in a spin chain, we bypass this problem, as we can use the techniques that

have been constructed and get much easier the final answer.

We considered our trace operators to be consisted only of scalar fields. The symmetry

group of R-symmetry is SO(6). Therefore the spaces Vi will correspond to an SO(6)

vector representation. Consequently, we have to do with a SO(6) spin chain. The

way that can be solved this via integrability is the algebraic Bethe ansatz. Because the

symmetry group is pretty large and this will lead to nested expressions, we opt for solving

a lower part of the theory, the SU(2) spin chain, the Heisenberg chain. We consider this

as a pretty instructive way to present the basic ideas of integrability, without being

messed up with exhausting calculations.

4 Heisenberg spin chain

We mentioned that instead of SO(6) sector (the set of scalar fields), we are going to

find the energy spectrum for the SU(2), a subsector. In particular, the fields that any

operator has are Z = 1√
2
(φ1 + iφ2) and W = 1√

2
(φ3 + iφ4). According to the mapping

to the spin chain, we can claim that Z corresponds to spin up, while W to spin down.

Moreover, as an operator can have only those two fields (and not even their conjugates),

it’s easy to understand that Kl,l+1 = 0, as you cannot contract Z with Z or W. Therefore

the anomalous dimension is:

ΓSU(2) =
λ

8π2

L∑
l=1

(1− Pl,l+1) (4.1)

If we want to write this in terms of spin chain, the Heisenberg model is:

ΓSU(2) =
λ

8π2

L∑
l=1

(
1

2
− 2~Sl · ~Sl+1

)
(4.2)

Moreover, expanding to its components (instead of Sx etc we will write in terms of S+

etc components):

ΓSU(2) =
λ

4π2

L∑
l=1

(1

4
− 1

2

(
S+
l S
−
l+1 + S−l S

+
l+1

)
− Szl Szl+1

)
(4.3)

The commutation relations they obey:

[Szj , S
±
k ] = ±~δj,kS±j [S+

j , S
−
k ] = 2~δj,kSzj (4.4)
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Going to construct the Hilbert space, we understand that each site has two states.

We chose these states to be eigenstates of the Szj operator. So the basic properties of

the Hilbert space of each site are:

Hj : Szj |±〉j = ±1

2
|±〉j , S±j |∓〉j = |±〉j , S±j |±〉j = 0 (4.5)

To obatin the full Hilbert space, H = ⊕Lj=1Hj . So a state of the spain is the

tensor product of states in each site. Next step is to define the vacuum. As we have a

ferromagnet, we define the ground state as the state with spins pointing up along z-axis.

|0〉 = ⊗Lj=1 |+〉j (4.6)

Also as we have [H,Sztot] = 0, where Sztot =
∑L

j=1 S
z
j . So every energy eigenstate

has also fixed magnetization along the z-axis. So it is convenient to label energy states

of the chain with the total magnetization. In particular, we can refer to a subspace as

HM , where M indicates the number of down spins. So in order to study the Heisenberg

chain, we have to take each sector HM . The first trivial case is to study the case where

every spin site is aligned to z axis. It’s obvious that the total spin will be Sztot = L
2

and the energy will be E=0. Next step is to study when there is one anti-aligned spin

(M=1). Initially, for the eigenstate we will use the ansatz:

|Ψ1〉 =

L∑
j=1

Ψ1(j) |j〉 , |j〉 = S−j |0〉 (4.7)

What we did is just to write a general linear combination of states of the chain where

there is only one spin down. If we take the Schrodinger equation H |Ψ1〉 = E1 |Ψ1〉 and

project it onto 〈j|:

λ

8π2

(
Ψ1(j − 1) + Ψ1(j + 1)

)
= (−E1 +

λ

4π2
)Ψ1(j) (4.8)

So the next step is to consider some function Ψ1. A reasonable choice is the free

wave ansatz Ψ1(j) = eikj . With this, the eigenvalue will be:

E1 =
λ

2π2
sin2(

k

2
) (4.9)

Because of the cyclicity of the spin chain, we have the periodicity condition, which

arises from the coupling of Lth site with the 1st. These conditions are:

λ

8π2

(
Ψ1(L) + Ψ1(2)

)
= (−E1 +

λ

4π2
)Ψ1(1) (4.10)

λ

8π2

(
Ψ1(1) + Ψ1(L− 1)

)
= (−E1 +

λ

4π2
)Ψ1(L) (4.11)

This condition is equivalent with imposing the requirement Ψ1(j + L) = Ψ1(j). So

we have an additional condition for the momentum, which is quantized due to this.
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Specifically, we have eikL = 1, which gives:

k =
2πn

L
, nε[0, ..., L− 1] (4.12)

But we have to pay attention. We mapped the single-trace operators to spin sites,

but moreover the dictionary has the condition that the momentum of the spin chain has

to be zero (See the table in the previous section). So from a first glance, someone would

say that the only acceptable mode is for n=0. But this case is trivial as every operator

that obeys this condition is chiral primary and therefore its anomalous dimension will

be zero. It is easy to see this from the result of the energy eigenvalue and due to the

mapping we did between the energy eigenvalue and the anomalous dimension.

We continue for M=2. Based on this, we will generalize the result to arbitrary

number of down spins (W fields). Similarly, the eigenstate will have the form |Ψ1〉 =∑
j1<j2

Ψ2(j1, j2) |j1, j2〉 with |j1, j2〉 = S−j1S
−
j2
|0〉. The only thing we consider is for

j1 = j2, then Ψ2 = 0. So this way of writing is pretty general and doesn’t make any

prior assumption and doesn’t restrict the validity for the whole problem. Again taking

Schrodinger equation and projecting onto 〈j1, j2|:

λ

8π2

(
Ψ2(j1 − 1, j2) + Ψ2(j1 + 1, j2) + Ψ2(j1, j2 − 1) + Ψ2(j1, j2 + 1)

)
=(

− E2 +
λ

2π2

)
Ψ2(j1.j2) 2 < j1 + 1 < j2 < L

λ

8π2

(
Ψ2(j1, j2 + 1) + Ψ2(j1 − 1, j2)

)
= (−E2 +

λ

4π2
)Ψ2(j1, j2)

2 < j1 + 1 = j2 < L

The corresponding free wave ansatz for Ψ2 is:

Ψ2(j1, j2) = A12e
ik1j1+ik2j2 +A21e

ik2j1+ik1j2 (4.13)

The eigenvalues of energy are:

E2 =
λ

2π2

(
sin2(

k1

2
) + sin2(

k2

2
)
)

(4.14)

The form of Ψ2 doesn’t depend on where the two down spins are. Thus if we use

the second equation (using that j1 + 1 = j2) that we wrote previously, we can get some

relation between A12 and A21.

A12

A21
= −1 + ei(k1+k2) − 2∆eik1

1 + ei(k1+k2) − 2∆eik2
≡ −e−iφ(k1,k2) (4.15)

We have defined the quantity φ(k1, k2):

φ(k1, k2) ≡ 2arctan

(
∆sink1−k2

2

cosk1+k2
2 −∆cosk1−k22

)
(4.16)

Having this, we can write the ansatz wavefunction-up to a global phase:

Ψ2(j1, j2) = ei(k1j1+k2j2−φ(k1,k2)2 − ei(k1j2+k2j1+
φ(k1,k2)

2
) (4.17)
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In order to solve fully the problem, we need additionally to take into cosideration the

boundary conditions, that is Ψ2(j2, j1 +L) = Ψ2(j1, j2) and Ψ2(j2 −L, j1) = Ψ2(j1, j2).

If we traslate these conditions in terms of momenta, we get the Bethe equations:

Lk1 + φ(k1, k2) = 2π(n1 +
1

2
) Lk2 − φ(k1, k2) = 2π(n2 +

1

2
) n1, n1εZ (4.18)

Again we have to use the zero momentum condition. This will mean k1 = −k2. This

means φ(k1, k2) = −k1. Moreover, the possible values for momenta are 2π(n+1/2)
L−1 , nεZ.

So this mean that the energy eigenvalues (anomalous dimension) we found previously

become:

γ = E2 =
λ

π2
sin2 πn

L− 1
(4.19)

We studied the M=2 sector. The generalization from now on is much easier. Follow-

ing the same train of thought, for some number of down spins M (M≤N/2) the ansatz

wavefunctions are written:

ΨM (j1, .., j)M =
∏

M≥a≥b≥1

sgn(ja − jb)×∑
PM

(−1)[P ]ei
∑M
a=1 kPaja+ i

2

∑
M≥a≥b≥1 sgn(ja−jb)φ(kPa ,kPb )

The coupled Bethe equations then are given:

Lka +
∑
b

φ(ka, kb) = 2πIa (4.20)

Note that Ia is some half-integer number if M is even and integer if M is odd. The

energy eigenvalues are:

EM =
λ

2π2

M∑
a=1

sin2ka
2

(4.21)

The total momentum is the sum of all ki, but we impose this to be zero.

One last thing, it is commonly used in this kind of problems to work with rapidities.

These are defined in the following way:

eip =
u+ i

2

u− i
2

⇔ u ≡ 1

2
cot

k

2
(4.22)

If we want to write the Bethe equations in terms of rapidities:(
ua + i

2

ua − i
2

)L
=

M∏
b 6=a

a = 1, ..,M
ua − ub + i

ua − ub − i
(4.23)

Additionally, the energy/anomalous dimension will be given:

γ = EM =
λ

8π2

M∑
j=1

1

u2
j + 1

4

(4.24)
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If we take the boundary conditions, the momentum will be given by:

P =
M∑
a=1

1

i
ln
(ua + i

2

ua − i
2

)
= πM − 2π

N

M∑
a=1

Ia mod2π (4.25)

The number Ia is some half-odd integer for L-M even and integer for L-M odd. But due

to the condition for zero momentum, this condition turns out to be:

M∏
a=1

(ua + i
2

ua − i
2

)
= 1 (4.26)

5 Conclusion

We studied the N = 4 SYM and found that we can compute quantities with the help

of integrability. Specifically, we mapped the problem of computing one-loop anomalous

dimensions of single trace scalar operators to the computation of the energies of a spin

chain. In this paper we only dealt with the SU(2) sector, since in this case we have the

Heisenberg spin chain, and hence it is the best choice for illustrating how integrability

enters in N = 4 SYM. However, it is possible to repeat the same process for the SO(6)

sector [10]. It is also possible to go beyond the first loop. In [6] the two and three-

loop anomalous dimension was calculated and it was again proved to be integrable.

Moreover, in [9] the anomalous dimension for the whole PSU(2, 2|4) of the N = 4 SYM

was calculated. Taking all these into consideration, we can conjecture that integrability

remains in all loops.

Our paper focused on the one side of the field called AdS/CFT integrability. The

AdS/CFT comes into play, because the conformal dimensions of the gauge invariant

operators of the N = 4 SYM are associated with the energies of string states in the

AdS side. It is also believed that other examples of the AdS/CFT correspondence are

integrable in the large N limit as well. All these help us realize the importance of

integrability in the high energy physics domain, since it helps us compute quantities in

regions otherwise difficult to approach.
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