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1 Introduction to the Hubbard model and its
symmetries

1.1 The Hubbard Hamiltonian

Most people at a graduate level of physics will be somewhat familiar with the
one dimensional Hubbard model and it’s Hamiltonian. The model arises as a
simplified version of the intractable Hamiltonian of a solid, that has to take
into account all interactions. The Hubbard model describes a one dimensional
chain of atoms of length L with periodic boundary conditions. The electrons
have same-site and nearest-neighbor interactions only. The Hamiltonian of the
model is given by a sum over hopping terms and same-site terms at every site.
In second quantization it is given by [1]

H = −t
L∑
j=1

∑
a=↑,↓

(
c†j,acj+1,a + c†j+1,acj,a

)
+ U

L∑
j=1

nj↑nj↓. (1)

Here the first term corresponds to the hopping and the second accounts for the
energy it costs to have two electrons with opposing spins on the same lattice
site. However, for our convenience we will write the Hamiltonian as

H = −
L∑
j=1

∑
a=↑,↓

(
c†j,acj+1,a + c†j+1,acj,a

)
+ 4u

L∑
j=1

nj↑nj↓, (2)

which corresponds to measuring in units of t. Also, we’ve defined u = U
4t .

The operators cj,a and c†j,a are the familiar annihilation and creation operators,
which satisfy the canonical anticommutation relations

{cj,a, ck,b} = {c†j,a, c
†
k,b} = 0 (3)

{cj,a, c†k,b} = δjkδab (4)

and nj,a = c†j,acj,a. Together with this Hamiltonian comes a set of states, known
as the Wannier states, that forms a basis:

B = {|x,a〉 ∈ H(L)|(1, ↑) ≤ (x1, a1) < · · · < (xN , aN ) ≤ (L, ↓)} (5)

where |x,a〉 = c†xN ,aN . . . c
†
x1,a1 |0〉 and cj,a |0〉 = 0 by definition and xj ∈

{1, . . . , L}, aj ∈ {↑, ↓} and j = 1, . . . , N , such that there are N electrons in
total. These Wannier states form a basis for the total Hilbert space of the sys-
tem. This space has dimension 4L as is readily seen when considering that every
site at position xj comes with four possible states

|0〉 , c†j,↑ |0〉 , c
†
j,↓ |0〉 , c

†
j,↑c
†
j,↓ |0〉 . (6)

The Hubbard model has been quite successful in predicting some physical prop-
erties of a solid in a better way than band theory does. Examples are magnetism,
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electronic properties and Mott transitions1. The latter will be elaborated on
in a later part of this digest. But for our purposes this model is specifically
interesting, because it is integrable with the Bethe Ansatz, meaning that no
perturbation theory is required to extract the physical properties that we are
interested in. This way of solving condensed matter systems exactly was first
found by Hans Bethe in 1931 [5] and was later widely used to solve several other
models, like the Lieb-Liniger model, several forms of Heisenberg chains and cer-
tain impurity models [6]. This digest will focus on the Hubbard model however,
which was first solved (using the Bethe Ansatz) by Lieb and Wu in their famous
1968 article [1]. We will provide a tentative derivation for the Bethe equations
and their string solutions and discuss some properties that follow from them.

1.2 Symmetries

The Hubbard Hamiltonian has some very useful symmetries. We will not dis-
cuss all of them here, but will restrict ourselves to spatial symmetries and the
symmetries that deal with spin. We will start with the spatial symmetry of the
system. For this, we define the permutation operator, as in [7],

Pi,j = 1− (c†i − c
†
j)(ci − cj), (7)

that permutes particles at site i and j. Also, from the canonical commutation
relations it follows that

Pi,jci = cjPi,j . (8)

The permutation operators form a representation of the symmetric group [8].
If we now imagine the Hubbard model with L sites and periodic boundary
conditions as an L-sided polygon, we have a DL (dihedral) symmetry group,
which is a subgroup of the symmetric group, where 2π

L rotations and reflections
that map the polygon onto itself leave the model invariant. This symmetry
is known as a spatial symmetry and is generated by the shift operator and
the parity operator. The shift operator is naturally defined in terms of the
permutation operator as

Ûn = Pn,n−1Pn−1,n−2 . . . P3,2P2,1, (9)

such that all particles are shifted once to the left if n = L. Similarly Û†L shifts all
particles to the right. We can generalize these operators to be spin dependent.
We have for example that

ÛL↑ = Pn↑,n−1↑Pn−1↑,n−2↑ . . . P3↑,2↑P2↑,1↑, (10)

where Pia,jb permutes a fermion with spin a at site i with a particle with spin
b at site j [9]. This operator shifts all fermions with spin up by one site to the
left. We thus have

Û ≡ ÛL = ÛL↑ÛL↓. (11)

1See for example [2],[3] and[4]
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The parity operator is then formed from the shift operator as

RL = Û2 . . . ÛL. (12)

The spin symmetry is twofold: we will need the symmetries that are gener-
ated by the Shiba transformation and the more familiar spin flip. We will start
by defining the spin flip as

J (s) =

L∏
j=1

Pj↑,j↓. (13)

With the definition of Pia,jb given above this means that Js indeed performs a
spin flip at every site, meaning that the Z-component of the total spin changes
sign. We will also need the ladder operators

S+ =

L∑
j=1

c†j,↑cj,↓, S− =

L∑
j=1

c†j,↓cj,↑ (14)

and their commutation relations[
Sz, S±

]
= ±S±,

[
S+, S−

]
= 2Sz. (15)

As usual, the spin operators describe an SU(2) symmetry group of the system.
The Hubbard Hamiltonian commutes with Sx, Sy and Sz and is thus invariant
under this rotation.
In a similar way we can define the Shiba transformation for an even number of
lattice sites as [7]

J (sh)
a = (c†L,a − cL,a)(c†L−1,a + cL−1,a) . . . (c†2,a − c2,a)(c†1,a + c1,a). (16)

These operators exchange a particle with spin a for a hole with the same spin
at every site. Also notice the change of sign for every other lattice site. We can
now look at the so called η-pairing symmetry, which looks similar to the spin
symmetry. It is useful to define

J
(sh)
↓ S+(J

(sh)
↓ )† =

L∑
j=1

(−1)jc†j,↑c
†
j,↓ =: −η+, (17)

J
(sh)
↓ S−(J

(sh)
↓ )† =

L∑
j=1

(−1)jcj,↓cj,↑ =: −η−, (18)

J
(sh)
↓ Sz(J

(sh)
↓ )† =

1

2

L∑
j=1

(nj,↑ + nj,↓ − 1) =
1

2
(N̂ − L) =: ηz. (19)

These η operators obey commutation relations as in equation (15). We can also
define ηx = 1

2 (η+ + η−) and ηy = − i
2 (η+ − η−). From the commutation of the
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spin operators with the Hamiltonian it follows via equations (17)-(19) that the
η-spin operators also commute with the Hamiltonian. Furthermore we have[

Si, ηj
]

= 0, i, j ∈ {x, y, z}. (20)

The η-pairing symmetry looks like another SU(2) symmetry, but we should not
forget that this symmetry only works for an even number of lattice sites. A short
calculation shows that Sz + ηz = N̂↑− L

2 , which means that for even L, we will
always have that either Sz and ηz are both integer or both half odd integer.
The total symmetry is thus SU(2)×SU(2)/Z2

∼= SO(4). The spin symmetry is
broken by applying a magnetic field, while the η-pairing symmetry is broken by
a chemical potential µ, since it does not preserve particle number.

2 Bethe Ansatz method and Lieb-Wu equations

As mentioned before, the Hubbard model can be exactly solved by the Bethe
ansatz method. To solve this model means we turn the problem of solving the
Schrödinger equation into the problem of finding solutions, called roots, of the
so called Lieb-Wu equations. These are a set of non-linear coupled algebraic
equations discovered by Lieb and Wu in their famous 1968 paper [1]. These
equations contain the all the physics of the Hubbard model and determine its
energy- and momentum spectrum. The problem of finding solutions of the Lieb-
Wu equations is a difficult, if not impossible task (for the N -particle case). Still,
they are very useful if we go to the thermodynamic limit, where only the dis-
tribution of solutions in the complex plane matters (see section 3). This is the
so called string hypothesis formulated by Takahashi in 1972 [10], were we turn
the problem of solving the Lieb-Wu equations into solving the Takahashi equa-
tions. In the thermodynamic limit we can express these equations as integral
equations and ultimately find the roots of the initial Lieb-Wu equations. We
will elaborate on the thermodynamic limit qualitatively in section 4, where the
interesting properties of the system, especially in the limit that U → 0, come
to show.
To illustrate the effectiveness of the Bethe ansatz method we will demonstrate
it on a simplified version of the Hubbard model, namely the problem with just
two particles instead of the general N -particle problem. Firstly, let us detail
what the N -particle problem really is. We are mostly following the derivation
of [7].

2.1 The problem in first quantization

As usual in quantum mechanics, we are searching for solutions of the time-
independent Schrödinger equation:

H |ψ〉 = E |ψ〉 . (21)

We also want to solve the eigenvalue equation the shift operator defined in
equation (11). This is a spatial symmetry of the system because this operator
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commutes with the Hamiltonian of (2):
[
Û ,H

]
= 0. Thus we are searching for

solutions which are eigenfunctions of both these operators, i.e. we must have:

Û |ψ〉 = ω |ψ〉 . (22)

Equation (21) and (22) are in the second-quantization form, meaning that we are
doing quantum field theory on the lattice and the operators are field operators.
To solve the two-particle problem it is easier to switch to first quantization
(just normal quantum mechanics on the lattice) for now, and express things in
coordinate form. We make use of the Wannier basis defined in (5) to write the
(N-particle) wave function as:

ψ(x;a) = 〈x,a|ψ〉 . (23)

We can switch back to to second quantization with

|ψ〉 =
1

N !

L∑
x1...xN=1

∑
a1...aN=↑,↓

ψ(x;a) |x,a〉 . (24)

Knowing this, we can express the Schrödinger equation as 〈x,a|H|ψ〉 = Eψ(x;a).
Now, how does the Hubbard Hamiltonian (2) act on the wannier states |x,a〉?
Using the commutation relations (3) and (4) and introducing the row vectors
eα, α ∈ {1, . . . , N} which have zeros everywhere except for column α, where
they have a one:

H |x,a〉 =

− L∑
j=1

∑
a=↑,↓

(
c†j,acj+1,a + c†j+1,acj,a

)
+ 4u

L∑
j=1

nj↑nj↓

 |x,a〉
= −

N∑
j=1

(|(x− ej) mod L,a〉+ |(x+ ej) mod L,a〉)

+ 4u
∑

1≤k<l≤N

δxk,xl
|x,a〉 ,

(25)

where for the hopping part of (2), say H0, we used that [c†j,acj±1,a, c
†
k,b] =

c†j,a{cj±1,a, c
†
k,b} = δj±1,kδa,bc

†
j,a and the periodic boundary conditions c†0,b =

c†L,b, c
†
L+1,b = c†1,b imply [H0, c

†
xj ,b

] = −c†xj−1,b − c†xj+1,b. Using this we can
calculate

〈x,a|H|ψ〉 = −
N∑
j=1

(∆−j,Lψ(x;a) + ∆+
j,Lψ(x;a)) + 4u

∑
1≤k<l≤N

δxk,xl
ψ(x;a)

(26)

where we defined cyclic shift operators for one particle:

∆±j,Lψ(x;a) = ψ((x± ej) mod L; ,a). (27)
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Now one can express the Schrödinger equation in the more convenient coordinate
representation:

H
(L)
N ψ(x;a) = Eψ(x;a) (28)

defining the N particle Hubbard Hamiltonian

H
(L)
N = −

N∑
j=1

(∆−j,L + ∆+
j,L) + 4u

∑
1≤k<l≤N

δxk,xl
. (29)

Similarly we can write Û in coordinate form, starting from equation (11):

〈x,a|Û |ψ〉 =
N∏
j=1

∆+
j,Lψ(x;a) =⇒ Û

(L)
N ψ(x;a) = ωψ(x;a) (30)

where Û
(L)
N =

∏N
j=1 ∆+

j,L. The equations (28) and (30) are still too hard too
solve because of the implied cyclic property of the equations. We can therefore
better let the length of the lattice go to infinity and afterwards impose boundary
conditions. To do this we introduce non-cyclic operators:

∆±j ψ(x;a) = ψ(x± ej ;a) (31)

HN = −
N∑
j=1

(∆−j + ∆+
j ) + 4u

∑
1≤k<l≤N

δxk,xl
(32)

ÛN =

N∏
j=1

∆+
j . (33)

Such that the equations we need to solve become

HNψ(x;a) = Eψ(x;a) (34)

ÛNψ(x;a) = ωψ(x;a), (35)

where the shift operators ∆±j are subject to the periodic boundary conditions:

(∆±j −∆±j,L)ψ(x;a). (36)

Solutions of (34) and (35) that satisfy (36) are also solutions of (28) and (30),
but it turns out this is not true the other way around, as we will later see.
Finding a solution to (34) and (35) is certainly no easy task. A full derivation
of the solution in the Bethe ansatz method is very complicated and rather
lengthy, for this I refer the reader to [7]. Therefore we will solve it not for N
particles but for just N = 2 to illustrate the way this is done. Doing this is
useful because one can still get a good insight into solving this problem with the
Bethe ansatz method and see the Lieb-Wu equations for the two-particle case,
where we can solve everything exactly fairly easily.
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2.2 Solving the two-particle problem

For the two particle case the equations (34) and (35) become:

H2ψ(x1, x2; a1, a2) = Eψ(x1, x2; a1, a2) (37)

Û2ψ(x1, x2; a1, a2) = ωψ(x1, x2; a1, a2) (38)

where we have the two particle Hamiltonian and shift operator

H2 = −(∆+
1 + ∆−1 + ∆+

2 + ∆−2 ) + 4uδx1,x2
(39)

.Û2 = ∆+
1 ∆+

2 (40)

Now the crucial step is to separate variables: the delta potential term in the
hamiltonian only depends on the relative coordinate n = x1 − x2, so it makes
sense to introduce, together with the relative coordinate, the center of mass
coordinate m = x1 + x2 and make the assumption:

ψ(x1, x2; a1, a2) = f(m)g(n), (41)

where f and g can depend on spin variables. Plugging this in (37) we get

f(m+ 1) + f(m− 1)

f(m)
=

(4uδn,0 − E)g(n)

g(n+ 1) + g(n− 1)
. (42)

So we get two linear difference equations with constant coefficients:

f(m+ 1) + f(m− 1) = Cf(m) (43)

g(n+ 1) + g(n− 1) =
4uδn,0 − E

C
g(n), (44)

where C is an undetermined constant. The solution to the equation (43) is a
linear combination of:

f(m) = A+wm +A−w−m. (45)

If we insert this back into (43) we see that w+ 1
w = C. Plugging it into (40) we

get

f(m+ 2) = ωf(m) (46)

which implies that either A+ or A− is zero for w 6= 1, so f only depends on one
(maybe spin dependent) amplitude (say A+), which we absorb into g and we
are left over with

f(m) = wm, (47)

ω = w2. (48)
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Now, for the g part we have again a general solution that after plugging back
in (44) reads

g(n) =

{
A−+zn −A−−z−n if n < 0

A++zn −A+−z−n if n > 0
(49)

where (44) for the energy reads:

E = −C(z +
1

z
) = −(w +

1

w
)(z +

1

z
) (50)

where in (49) there are some undetermined amplitudes Aαβ with α, β ∈ {+,−}
that depend on the spin variables of ψ. There are multiple constraining equa-
tions on these variables, beginning with consistency of g at n = 0. This gives

A+− +A−+ = A++ +A−−, (51)

which is the first constraint on Aαβ . Plugging n = 0 into (44) we get

(w +
1

w
)(g(1) + g(−1)) = (4u− E)g(0) (52)

1

2
(wz − 1

wz
− w

z
+
z

w
)(A+− +A++ −A−+ −A−−) = 4u(A−+ −A−−). (53)

Now we introduce the important variables k1 and k2 and define sj :

eik1 ≡ wz, eik2 ≡ w

z
, sj = sin kj , j ∈ {1, 2}. (54)

Notice that from this definition we have

wmzn = ei(k1x1+k2x2), wmz−n = ei(k1x2+k2x1), (55)

which will come in handy later. Using these definitions, equation (53) turns into
the more elegant

(s1 − s2)(A+− +A++ −A−+ −A−−) = 4iu(A−+ −A−−). (56)

Now we want to impose more restrictions on the spin amplitudes such that we
can fully determine g as a function of n, a1 and a2. The spin dependency lies
fully in the spin amplitudes and therefore we can think of them as spinors with
two indices: Aαβa1a2 . In the next steps we need a permutation matrix which swaps
the indices of the spin amplitudes: Πb1b2

a1a2 = δb1a2δ
b2
a1 such that

(ΠAαβ)a1a2) =
∑
b1,b2

Πb1b2
a1a2A

αβ
b1b2

= Aαβa2a1 . (57)

We then remember that we are dealing with electrons, so the wavefunction must
be totally anti-symmetric under exchanging x1 ↔ x2, which corresponds to

8



n 7→ −n, while also a1 ↔ a2. Thus the following must hold: g(n) = −Πg(−n),
because only g in ψ depends on n and the spin. What follows is

A+− = ΠA−+, (58)

A++ = ΠA−−. (59)

We now have four different equations for four different variables Aαβ (namely,
equations (51), (56), (58) and (59)), but there turns out to be just three inde-
pendent ones. For the full derivation of the spin amplitudes I point the reader
to Essler’s book [7]. In the end we get the following formula for g, with just one
spin amplitude A−+ remaining:

g(n) =

{
A−+zn − Y (s1 − s2)A−+z−n if n ≤ 0

Y (s1 − s2)ΠA−+zn −ΠA−+z−n if n ≥ 0
(60)

where the so called Yang’s Y -operator (which acts on the spin amplitudes) is
defined by

Y (λ) =
2iu+ λΠ

2iu+ λ
(61)

Now we can find the full wave function (for C 6= 0) by inserting (47) and (60)
into (41), while using (55):

ψ(x1, x2) =

{
A−+ei(k1x1+k2x2) − Y (s1 − s2)A−+ei(k1x2+k2x1) if x1 ≤ x2

Y (s1 − s2)ΠA−+ei(k1x1+k2x2) −ΠA−+ei(k1x2+k2x1) if x1 ≥ x2

(62)

for C 6= 0, which corresponds to k1, k2 ∈ C, k1 + k2 6= π mod 2π. A fun fact:
this looks much like the original bethe ansatz state, whereas Bethe himself
used a similar wavefunction as an ansatz depending on a linear combination
of ei(k1x1+k2x2) and ei(k1x2+k2x1) (in the two particle case) to exactly solve the
problem of the one-dimensional spin chain in 1931 [5]. Despite this great ac-
complishment at the time, it was not until some time later that other models
(like the Hubbard model) were solved with the Bethe ansatz. Now let us carry
on with the derivation. This makes the eigenvalues of the Hamiltonian and the
shift operator equal to

E = −2 cos k1 − 2 cos k2 (63)

ω = ei(k1+k2) (64)

Now, what is the spin amplitude A−+? It turns out to be a linear combination
of spin singlet state φsing and the spin triplet state φtrip, where

φsing(a1, a2) = δa1,↑δa2,↓ − δa1,↓δa2,↑ (65)

φtrip(a1, a2) =


δa1,↑δa2,↑

δa1,↑δa2,↓ + δa1,↓δa2,↑

δa1,↓δa2,↓

. (66)
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Equipped with this and

Πφsing = −φsing, Πφtrip = φtrip (67)

we can write the singlet solution as

ψ(x1, x2) = φsing ·

{
ei(k1x1+k2x2) + s1−s2−2iu

s1−s2+2iue
i(k1x2+k2x1) if x1 ≤ x2

s1−s2−2iu
s1−s2+2iue

i(k1x1+k2x2) + ei(k1x2+k2x1) if x1 ≥ x2

(68)

and the triplet solution as

ψ(x1, x2) = φtrip · (ei(k1x1+k2x2) − ei(k1x2+k2x1)). (69)

2.3 From boundary conditions to Lieb-Wu equations

Okay, great! Finally we got solutions (68) and (69) to the equations (34) and
(35), which look like two scattering electrons in either a singlet or triplet state,
in position x1 and x2 and with momentum k1 and k2, respectively (which of
course, makes sense). But we still have to impose the boundary conditions (36).
These can be summarized as

ψ(0, x2;a) = ψ(L, x2;a), ψ(L+ 1, x2;a) = ψ(1, x2;a) (70)

(and similarly for x2). If we now fill in our general solution (62) into (70) we
get

eik1L
(
Y (s1 − s2)Π− e−ik1L

)
A−+eik2x2

− eik2LY (s1 − s2)
(
Y (s2 − s1)Π− e−ik2L

)
A−+eik1x2 = 0 (71)

where we used Y (λ)Y (−λ) = 1 and x2 ∈ {1, . . . , L}. If k1 6= k2 then eik1L

and eik2L are linearly independent and the following is therefore necessary and
sufficient:

Y (s1 − s2)ΠA−+ = e−ik1LA−+ (72)

Y (s2 − s1)ΠA−+ = e−ik1LA−+. (73)

Then for the singlet state φsing, using (61) and (67):

eik1L =
s1 − s2 + 2iu

s1 − s2 − 2iu
, eik2L =

s2 − s1 + 2iu

s2 − s1 − 2iu
. (74)

For the triplet state φtrip, again using (61) and (67):

eik1L = eik2L = 1. (75)

The last equations (74) and (75) can be interpreted as the Lieb-Wu equations
N = 2 and M = 1, where M is the number of down spin electrons. We will
generalize this formula to the N -particle case, but firstly we will not get away
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without discussing what happened to the C = 0 case. Here we still have (47)
together with w2 = −1 to get f(m) = (±i)m and for g we have

(4uδn,0 − E)g(n) = 0 (76)

which has two different non-trivial solutions: E = 0 and E = 4u. In the first
case everything is pretty much the same, again with the anti-symmetric wave
function given by (62) but now with arbitrary k1, k2 ∈ C. The other possibility
gives us a more interesting solution, which is g(n) = Aδn,0. Again we require

g(n) = −Πg(−n) =⇒ ΠA = −A (77)

which means A = φsing such that g(n) = φsingδn,0 and the wavefunction be-
comes

ψ(x1, x2) = φsing(−1)x1δx1,x2
. (78)

This looks like a weird solution: it is a bound state of two electrons even though
their interaction can be repulsive (U > 0). We also see that this state does not
satisfy our boundary equations because it is not a solution to (70) (ψ(0, L) =
0 6= ψ(L,L) = φsing(−1)L). Still, it is an eigenstate of the cyclic two-particle
Hamiltonian and the two-particle shift operator (equations (28) and (30) for

N = 2): (H
(L)
2 ψ)(x1, x2) = 4uψ(x1, x2). Therefore, as we mentioned, there are

some solutions of (28) and (30) which are not solutions of (34) and (35) with
the boundary conditions (36). Is this a problem? It turns out that here the
SO(2) symmetry of the η-pairs comes into play. If we use (24) to switch back
to second quantization of the wavefunction (78), we get:

|ψ〉 =
1

2

L∑
x1,x2=1

∑
a1a2=↑,↓

ψ(x;a) |x,a〉 (79)

=
1

2

L∑
x1,x2=1

∑
a1a2=↑,↓

(−1)x1δx1,x2 (δa1,↑δa2,↓ − δa1,↓δa2,↑) c†x2,a2c
†
x1,a1 |0〉 (80)

=

L∑
x1=1

(−1)x1c†x1,↓c
†
x1,↑ |0〉 = η+ |0〉 , (81)

where we used equation (17) for η+. Therefore we can get this state out of
the solutions of the Bethe ansatz method by applying η-symmetry operators
to them. This is generalized to the N particle case. The Bethe ansatz wave-
functions that one gets after a lengthy calculation (see, for example, [7]) will
be either the lowest or highest weight states of the symmetry (either spin or
η) operators. We can get the full spectrum of the cyclic Hamiltonian and shift
operator by applying these symmetry operators on them.
These Bethe ansatz states, which are thus eigenfunctions of the N-particle infi-
nite interval Hamiltonian (34) and shift operator (35) subject to the boundary
condition (36), for N electrons and M down spins, are specified by two sets of
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quantum numbers: kj , j ∈ {1, . . . , N} and λl, l ∈ {1, . . . ,M}, 2M ≤ N ≤ L.
We call the kj charge momenta and λl spin rapidities and we group them into
row vectors: k = (k1, . . . , kN ), λ = (λ1, . . . , λM ), so we can act on them
with elements from the symmetric group of order N (or M) SN , wherefore
I assume the reader is familiar. An element Q ∈ SN acts on the vectors as
kQ = (kQ(1), . . . , kQ(N)). It turns out the wavefunctions depend on the order
of the positions of the electrons, xj . For a specific ordering Q ∈ SN :

1 ≤ xQ(1) ≤ · · · ≤ xQ(N) ≤ L. (82)

For this ordering, the Bethe ansatz wavefunctions are given by:

ψ(x;a|k;λ) =
∑
P∈SN

sign(PQ) 〈aQ|kP,λ〉 ei〈kP,xQ〉 (83)

where

〈aQ|kP,λ〉 =
∑

R∈SM

A(λR)

M∏
l=1

FkP (λR(l); yl) (84)

Fk(λ; y) =
2iu

λ− sin ky + iu

y−1∏
j=1

λ− sin kj − iu
λ− sin kj + iu

(85)

A(λ) =
∏

1≤m<n≤M

λm − λn − 2iu

λm − λn
(86)

where the yj are the coordinates of the jth down spin of the aQ(1), . . . , aQ(N)

sequence. Okay, phew... Now, the only things left to calculate are the charge
momenta kj and the spin rapidities λl, which is done imposing the periodic
boundary conditions through (finally) the Lieb-Wu equations:

eikjL =

M∏
l=1

λl − sin kj − iu
λl − sin kj + iu

, j = 1, . . . , N, (87)

N∏
j=1

λl − sin kj − iu
λl − sin kj + iu

=

M∏
m=1
m 6=l

λl − λm − 2iu

λl − λm + 2iu
l = 1, . . . ,M. (88)

After all this, the Bethe ansatz wavefunctions (83) are eigenfunctions of the
Hamiltonian (34) and the momentum operator, which is a function of the shift
operator (35), with eigenvalues

E = −2

N∑
j=1

cos kj + u(L− 2N), P =

 N∑
j=1

kj

 mod 2π. (89)

3 String solutions

The solutions, also known as the roots, of the Lieb-Wu equations as given by
(87) and (88) are in general quite hard to find, even numerically. But once one
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looks at the thermodynamic limit they are actually relatively easy to find. The
numbers k and λ can in general be assumed to be complex numbers. It so hap-
pens that these numbers are found in strings of solutions: a set of solutions for
the roots is (almost) regularly spaced in the complex plane. From those strings,
one can find solutions involving only the real part of the roots. This is known
as the string hypothesis [5]. The string solutions of the Hubbard model were
first found by Takahashi in 1972 [10].
From the solutions on these strings actually all 4L solutions can be found by
applying the lowering operators of the spin and raising operators of the η-spin,
as was shown by Essler, Korepin and Schoutens [11]. This is because the solu-
tions that are found by the string hypothesis are the highest and lowest weight
solutions of the spin and η-spin operators respectively. We will only work with
the thermodynamic limit, so these solutions will be valid.

3.1 k − Λ strings and Λ strings

Let us now actually turn to finding the solutions. Start by assuming that L is
very large and kj has a non-zero complex part for some j. This means that the
exponential on the left of equation (87) blows up for this kj . Therefore on the
right side at least one of the factors must be very close to a pole. This condition
can then be substituted in another Lieb-Wu equation and one can repeat this,
until there are as many simplified equations as unknown variables, at which
point the solutions can be found, giving 2m k’s and m Λ’s that combine into a
k − Λ string of length 2m.
For the simplest example where N = 2 and M = 1 we can quickly do this by
hand [7]. The Lieb-Wu equations (87) and (88) can then be written as

eik1L =
Λ′ − sin k1 − iu
Λ′ − sin k1 + iu

(90)

eik2L =
Λ′ − sin k2 − iu
Λ′ − sin k2 + iu

(91)

Λ′ − sin k1 − iu
Λ′ − sin k1 + iu

· Λ′ − sin k2 − iu
Λ′ − sin k2 + iu

= 1, (92)

where k1 = a− ib, with b > 0 by assumption, such that equation (90) becomes
exponentially large in the thermodynamic limit. We therefore have

Λ′ = sin k1 − iu (93)

⇒ k1 = π − sin−1(Λ′ + iu) (94)

to exponential precision. This then leads to the first factor in (92) being expo-
nentially large, which in turn forces the second term to be exponentially close
to zero. We therefore also have the equation

Λ′ = sin k2 + iu (95)

⇒ k2 = π − sin−1(Λ′ − iu). (96)
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The last unknown Λ′ can then be numerically found by eliminating k1 and k2

in (92) using (93) and (95) and specifying u. Then applying a root finding al-
gorithm, one can find Λ′. This is the general way to go about these problems.
By using a similar trick and assuming λl to be complex, we find a second type
of strings only involving the Λ’s, known as Λ strings. If we assume all kj to be
real, then for large N and M � N , we see that the left hand side of equation
(88) goes to zero, since the fraction is always less than one for every term. It
must therefore be true that at least one of the right hand side terms is close to
zero. This argument can then be repeated and one finds a Λ string of length m.
These techniques can be generalized to find the string solutions for bigger sys-
tems than in our example. In general, a solution to the Lieb-Wu equations looks
like a combination of several string solutions. We thus label the different strings
by an index α. The solutions for a k − Λ string of length 2m then become [10]

k1
α =π − sin−1(Λ′mα +miu),

k2
α = sin−1(Λ′mα + (m− 2)iu),

k3
α =π − k2

α,

...

k2m−2
α = sin−1(Λ′mα − (m− 2)iu),

k2m−1
α =π − k2m−2

α ,

k2m
α =π − sin−1(Λ′mα −miu),

(97)

Λ′m,jα =Λ′mα + (m− 2j + 1)iu, j = 1, . . . ,m, (98)

while the solutions of a Λ string are given by

Λm,jα = Λmα + (m− 2j + 1)iu, j = 1, . . . ,m. (99)

Here, Λmα are the real centers of the string. Also note the difference between the
primed and unprimed Λ’s, distinguishing between Λ’s found from k−Λ strings
and Λ strings respectively.
One may wonder what the physical significance of these complex solutions is,
since plane waves are given by real kj ’s. One can show that for complex kj ’s the
wave function describes a bound state: the wave function decays exponentially
as a function of the distance in coordinates between electrons [7, 11]. We are,
however, generally more interested in plane wave solutions, and thus in real-
valued k′js. We will elaborate on this in the following section.

3.2 Takahashi’s equations

Summarizing our last section, there are three types of solutions. We have

• Mn Λ strings of length n;

• M ′n k − Λ strings of length n;
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• Me single kj ’s.

These strings satisfy

M =

∞∑
n=1

n(Mn +M ′n), (100)

N = Me +

∞∑
n=1

2nM ′n, (101)

with N the number of particles and M the number of down spins, as before.
We see that this is indeed true if each kj describes an electron, while each λ
describes an electron with spin down. These equations let us rewrite the first
Lieb-Wu equations (87) into

eikjL =
∏
n,m,α

Λn,mα − sin kj − iu
Λn,mα − sin kj + iu

∏
n,m,α

Λ′n,mα − sin kj − iu
Λ′n,mα − sin kj + iu

, (102)

after which we can fill in equations (98) and (99), which were the solutions for
the Λ’s [10]. We then see that most terms of the products in m can be crossed
out, since the denominator of one term is the same as the numerator of the next
and only the outer two terms remain, giving

eikjL =
∏
n,α

Λnα − sin kj − inu
Λnα − sin kj + inu

∏
m,n,α

Λ′nα − sin kj − inu
Λ′nα − sin kj + inu

(103)

Taking the logarithm then gives

kjL = 2πIj −
∞∑
n=1

Mn∑
α=1

θ

(
sin kj − Λnα

nu

)
−
∞∑
n=1

M ′
n∑

α=1

θ

(
sin kj − Λ′nα

nu

)
, (104)

where θ(x) = 2 arctan(x) and

Ij is

{
∈ Z if

∑
m(Mm +M ′m) is even

∈ Z + 1
2 if

∑
m(Mm +M ′m) is odd

(105)

are the branches of the log and we used that

ln

(
1− xi
1 + xi

)
= −2i arctan(x).

These Ij are limited by the invariance of a 2π phase shift of the complex expo-
nential in (103) and are thus given within the range

− L

2
≤ Ij ≤

L

2
. (106)
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For the second Lieb-Wu equation we can do something similar, but these steps
are a bit more involved and will not be given here. The result is given by the
following two equations, which are the second and third Takahashi equations,

N−2M ′∑
j=1

θ

(
Λnα − sin kj

nu

)
= 2πJnα +

∞∑
m=1

Mm∑
β=1

Θnm

(
Λnα − Λmβ

u

)
(107)

2LRe(arcsin(Λ′nα + inu)) = 2πJ ′nα +

N−2M ′∑
j=1

θ

(
Λ′nα − sin kj

nu

)

+

∞∑
m=1

M ′
m∑

β=1

Θnm

(
Λ′nα − Λ′mβ

u

) (108)

where we’ve defined M ′ =
∑
n nM

′
n as the total number of Λ’s in k−Λ strings.

The function Θnm is given by

Θnm(x) =

θ
(

x
|n−m|

)
+ 2θ

(
x

|n−m|+2

)
+ . . .+ 2θ

(
x

n+m−2

)
+ θ

(
x

n+m

)
if n 6= m

2θ
(
x
2

)
+ 2θ

(
x
4

)
+ . . .+ 2θ

(
x

2n−2

)
+ 2θ

(
x
2n

)
if n = m

(109)
and Jnα and J ′nα again label the different branches of the logarithm and are given
by

Jnα is

{
∈ Z if N −Mn is odd

∈ Z + 1
2 if N −Mn is even,

(110)

J ′nα is

{
∈ Z if L−N +M ′n is odd

∈ Z + 1
2 if L−N +M ′n is even,

(111)

with ranges

|Jnα | ≤
1

2

(
N − 2M ′ −

∞∑
m=1

tmnMm − 1

)
, (112)

|J ′nα | ≤
1

2

(
L−N + 2M ′ −

∞∑
m=1

tmnM
′
m − 1

)
(113)

that are similar to the ones found by Yang & Yang for a different model [12].
Here tmn is defined as

tmn = 2 min(m,n)− δmn. (114)

The numbers Ij , J
n
α and J ′nα are equivalent to our original roots of the Lieb-

Wu equations kj ,Λ
n
α and Λ′nα in the sense that every set of quantum numbers

{Ij , Jnα , J ′nα } determines a unique solution that is an eigenfunction of the Hub-
bard Hamiltonian. It is thus equally valid to describe our system in these quan-
tum numbers, which gives a more intuitive picture, equivalent to the one shown
in class. See for example figure 1, where a possible configuration of quantum
numbers is given.
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Figure 1: A possible configuration of quantum numbers Ij , describing some
excited state of the Hubbard model with 6 electrons. We’ve chosen

∑
m(Mm +

M ′m) even, such that all Ij are integer.

4 The thermodynamic Bethe Ansatz

We can now start to apply the solutions we found to extract some physical
properties from our system. For Takahashi’s equations (104), (107) and (108)
one can define so called counting functions y(k), zn(Λ) and z′n(Λ′) as follows [7]

Ly(k) = kL+

∞∑
n=1

Mn∑
α=1

θ

(
sin k − Λnα

nu

)
+

∞∑
n=1

M ′
n∑

α=1

θ

(
sin k − Λ′nα

nu

)
, (115)

Lzn(Λ) =

N−2M ′∑
j=1

θ

(
Λ− sin kj

nu

)
−
∞∑
m=1

Mm∑
β=1

Θnm

(
Λ− Λmβ

u

)
, (116)

Lz′n(Λ′) = L(arcsin(Λ′ + niu) + arcsin(Λ′ − niu))

−
N−2M ′∑
j=1

θ

(
Λ′ − sin kj

nu

)
−
∞∑
m=1

Mm∑
β=1

Θnm

(
Λ′ − Λmβ

u

)
, (117)

which are constructed in such a way that

y(kj) =
2πIj
L

, zn(Λnα) =
2πJnα
L

, z′n(Λ′nα ) =
2πJ ′nα
L

. (118)

In the thermodynamic limit we can also define root densities as a generalization
of giving all the roots. We can define particle- and hole-like densities for k
as ρp(k) and ρh(k) respectively and similarly for Λ(′) we define σ(′)p(Λ(′)) and
σ(′)h(Λ(′)). Takahashi’s equations can then be written in integral form, using
these densities and the counting functions defined in equations (115)-(117). We
will not give the derivation here, since it is rather involved and we would like
to get to some actual thermodynamic properties of the system. The integral
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formulas are given by [7, 10]:

ρp(k) + ρh(k) =
1

2π
+ cos(k)

∞∑
n=1

∫ ∞
−∞

dΛan(Λ− sin k)(σ′pn (Λ) + σpn(Λ)) (119)

σhn(Λ) = −
∞∑
m=1

Anm ∗ σ′pm
∣∣∣∣
Λ

+

∫ π

−π
dkan(sin k − Λ)ρp(k), (120)

σ′hn (Λ) =
1

π
Re

1√
1− (Λ− inu)2

−
∞∑
m=1

Anm ∗ σ′pm
∣∣∣∣
Λ

−
∫ π

−π
dkan(sin k − Λ)ρp(k), (121)

where

an(x) =
1

2π

2nu

(nu)2 + x2
, (122)

Anm ∗ f
∣∣∣∣
x

= δnmf(x) +

∫ ∞
−∞

dy

2π

d

dx
Θnm

(
x− y
u

)
f(y). (123)

These equations thus describe exact solutions for the hole densities in terms of
the particle densities in the thermodynamic limit.
We will now shortly discuss what happens to the ground state with no external
magnetic field in the limit U → 0. To do this, we first have to take a look
at chemical potentials. It turns out that one can calculate chemical potentials
by using the integral formulas (119)-(121) and defining the so called dressed

energies which involve logarithms of the ratio of ρh(k)
ρp(k) times the temperature

T . Then we consider the half-filled model in the ground state, i.e. T = 0.
Now something very interesting happens: one can easily see that for U = 0 in
(2), the model describes free electrons on a lattice. This model is obviously a
conducting one at half filling, since the electrons are free to move around. But
now, if we very slightly turn on U > 0 by say a small ε, the Hubbard model
spontaneously turns into an insulator! One can see this by looking at the jump
in chemical potential at half filling. We denote the chemical potential µ− for
the energy difference of the half filled state and the almost half filled state:

µ−(u) = E(L, u)− E(L− 1, u), (124)

whereby the notation E(N, u) we mean the ground state energy of the state
with N electrons. By using the derivation of the particle densities and dressed
energies mentioned above one will find for this chemical potential the following
formula:

µ−(u) = 2− 2u− 2

∫ ∞
0

dω

ω

J1(ω)e−ωu

coshωu
, (125)

where Jn is the n-th Bessel function. Now we make use of the Shiba transforma-
tion (16), which tells us that E(L− 1, u) = E(L+ 1, u). The chemical potential
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with one more electron, µ+, is now given by

µ+(u) = E(L+ 1, u)− E(L, u) = −µ−(u) (126)

=⇒ µ+ − µ− = −4 + 4u+ 4

∫ ∞
0

dω

ω

J1(ω)e−ωu

coshωu
. (127)

So we see that there is a gap in the potential at half filling given by (127). This
means the model is an insulator for every non-zero U(= 4ut). A transition from
a metallic (conducting) to an insulating (non-conducting) phase is called a Mott
transition. In the same paper where Lieb and Wu derived the Lieb-Wu equations
to solve the Hubbard model exactly, they concluded that there is an absence of
a Mott transition for non-zero U for the Hubbard model in one dimension [1].

5 Conclusion and Outlook

In this digest we have examined the Hubbard model, a model describing fermions
(electrons) on a one-dimensional lattice with a nearest-neighbor hopping term
and an on-site interaction term. What turns out to be special about this one-
dimensional model is that, despite its non-zero interaction terms, it yields an
exact solution. That is, the problem of solving the Schrödinger equation is re-
duced to finding roots of the coupled algebraic Lieb-Wu equations (87), (88).
These are very useful in the thermodynamic limit where they can be solved by
looking at the distribution of roots in the complex plane. Then one can com-
pute the physical properties of the system, where we highlighted the magnetic
properties of the material. A strange phenomenon arised here: the system is
metallic for only U = 0, while it is an insulator for any non-zero U . This means
the insulating property of the system originates only from the electron-electron
interaction.
As an outlook from this short digest one could look at many further applica-
tions of this exact solution of the Hubbard model, not just the conductivity.
These include looking at other phase transitions, adding a external magnetic
field or a chemical potential term in the Hamiltonian, looking at excited states,
investigating other limits, etc. For all these Essler’s book is a good reference
to the interested reader [7]. There are also other ways of solving the Hubbard
model, using a method called quantum inverse scattering. I can refer readers
interested in this method to the book [13]. Overall the exact solution of the
Hubbard model by Lieb and Wu was a real breaking point in this field. It in-
duced many useful applications as an approximation to, for example, particles
in periodic potentials and low temperatures and can explain certain properties,
like magnetism and electronic properties, much better than other theories do.
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