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1 Introduction

Suppose we consider the time evolution of a d-dimensional quantum system from
an initial state |ψ0〉 which is the ground state of a hamiltonian H0. At t = 0,
one of the parameters of the hamiltonian is abruptly changed (for example we
can inject energy or turn on a magnetic field). The abrupt change, or ’quench’,
is supposed to be carried out over a time scale much less than the dynamics
near the ground state of H0. How does the initial state |ψ0〉 evolve under this
new Hamiltonian H 6= H0, i.e. what is |ψ(t)〉 = e−iHt |ψ0〉?

This seems like a simple question that we have solved many times in our bache-
lor’s quantum mechanics courses. However, in many-body systems, it has been
shown to be a challenging problem to understand the dynamical behaviour fol-
lowing a quantum quench [4]. At the same time there are many reasons that
make studying quantum quenches worthwhile. One of the scenarios in which the
quantum quench gives us interesting physics is when we look for thermalisation.

If for an arbitrary finite subsystem A, the reduced density matrix ρA(t) has a
long-time limit that corresponds to the Gibbs statistical ensemble, the system
is said to thermalise. In the recent theoretical and experimental research it
has been shown that generic and integrable models have dramatically different
behaviour following a quantum quench. Generic systems (locally) thermalise,
whereas integrable models obtain stationary values that are described by an
ensemble different from the Gibbs statistical ensemble [2]. This peculiar fact
has revived the interest in the study of quantum quenches. Moreover, recent
experimental developments have made it possible to create and study essentially
one-dimensional systems by trapped ultra-cold atomic gases [2]. With this new
experimental tool, it is possible to check and play with theoretical concept of
quench dynamics. Hence, the quantum quench theory has possibly gained an
important empirical foundation.

To study quench dynamics, advanced tools have been developed for analysing
realistic models. However, as an introduction to the subject, it is wise to start
with investigating quench dynamics in a 1+1D CFT. Not only is this setting a
nice first step in the world of quantum quenches, it is also used as a playground

1



for testing new ideas in quantum quenches. In this research digest, we would
like to give an introduction of the 1+1D CFT approach to quantum quenches,
following the paper by Pasquale Calabrese and John Cardy [1]. We want to
make statements about the long-time evolution of correlation functions in a
1+1 dimensional CFT. Although this is of course a very specific model, we can
make come some interesting observations on the behavior of these models after
a quantum quench, such as the light-cone effect.

2 The general CFT approach to global quantum
quenches

Firstly, we will outline the motivation for taking a CFT approach to studying
the quantum quench. Suppose we consider a quantum theory living in d spatial
dimensions, where time is taken to be continuous. We take a quantum system
prepared at time t = 0 in a initial state |ψ0〉, which is the ground state of some
hamiltonian H0, which we take to be translationally invariant, with short-range
correlations and entanglement (e.g. the ground-state of a gapped hamiltonian
H0). We let this quantum state evolve (i.e. times t > 0) unitarily according to
the dynamics given by a different Hamiltonian H, i.e. H 6= H0. Though, this
hamiltonian H may be related to H0 by varying a parameter such as turning
on an external field.

The correlation functions of some local operators Φj(rj) at some time t are the
expectation values of the product of these operators given by [2]

〈Φn(t, rn)〉 = 〈ψ0| eiHtΦ1(r1)Φ2(r2)...Φn(rn)e−iHt |ψ0〉 (1)

We can modify this expression to time-dependent correlation function in eu-
clidean space (i.e. with imaginary time evolution) as

〈Φn(t, rn)〉 = 〈ψ0| e−Hτ2Φ1(r1)Φ2(r2)...Φn(rn)e−Hτ1 |ψ0〉 , (2)

where this equation is nothing more than the correlation function in an infinite
euclidean strip of width τ1 + τ2 and with boundary conditions on each edge
corresponding to the state |ψ0〉. In order to return to the real time equation
1 from the equation for the strip geometry 2, we should analytically continue
the imaginary times to real times. Naively, we would think the imaginary times
transform as τ1 → it and τ2 → it. However, doing so, we would end up with
a euclidean strip of width zero, which doesn’t make sense. Luckily, in the case
when the time evolution is determined by a 1+1 dimensional CFT, we can
avoid this problem. If a system is at or close to a quantum phase transition,
we can appeal to the Renormalization Group (RG) theory of boundary critical
phenomena: the actual boundary conditions τ = τ1 and τ2 are replaced by the
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conformal invariant boundary conditions |ψ0〉 at τ = −τ0 + τ1 and τ = τ0 + τ2,
where τ0 is called the extrapolation length. We can make this replacement
because we know that any boundary state will flow to one of the RG fixed
points. These fixed points correspond to a conformal field theory and so we can
use the powerful tools of CFT to evaluate our calculations. The extrapolation
length τ0 then measures the deviation of the actual state from the RG fixed
points. Moreover, once we take a finite τ0, it is then possible to have a nonzero
width if we take τ1 = it and τ2 = −it. It is not possible to take the limit
τ0 → 0 because scale-invariant boundary states are not normalizable and the
subsequent time evolution would not be well defined.

To simplify the calculations we will perform later, it is practical to perform a
translation in imaginary time τ → τ + (τ0 + τ1), which results in the following
correlation function in the euclidean strip with τε[0, 2τ0]:

〈ψ∗0 |Φ1(x1, τ)Φ2(x2, τ)...Φn(xn, τ) |ψ∗0〉 ,

where the states |ψ∗0〉 are the conformally invariant boundary states and τ must
be considered a real number. Only at the end of the calculations we must
analytically continue to real time by taking τ → τ0 + it in order to evaluate the
long (real) time behavior of the correlation functions.

3 One space dimension and CFT

We consider the case when H is at a quantum critical point whose long-distance
behavior is given by a 1+1-dimensional CFT.

The infinite Euclidean strip can be formed from the upper half-plane (UHP)
Imz > 0 by the conformal mapping

w(z) =
2τ0
π

log z, (3)

where the points of the strip are labelled by the complex numbers wi = ri + iτ
with 0 < Imw < 2τ0. On the UHP the images of the points at the same
imaginary time on the strip lie along θ = arg zi = πτ/2τ0. This map is displayed
in Figure 1.

In the case when our local operators are primary scalar operators Φi(wi), the
correlation function of these operators in the UHP is transformed to the corre-
lation function in the strip by using the standard transformation

〈ΠΦi(wi)〉strip = Π|w(́zi)|−xi〈ΠΦi(zi)〉UHP, (4)
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Figure 1: Left: Infinite imaginary time strip for points of the correlation func-
tions at equal times, where τ = Imwi will be taken to real times, i.e. τ → τ0+it.
Right: Conformal mapping of the infinite time strip to the upper-half plane (c.f.
Eq. 3), where θ = πτ/2τ0.

where the bulk scaling dimension of Φi is denoted by xi. From Euclidean space
we can go back to our Minkowski space by transforming τ → τ0 + it and taking
the limit t, rij � τ0.

This method is applied to the one-point and two-point function of a primary
scalar field in the following sections.

3.1 The one-point function

We will start with considering the one-point function of a scalar primary field.
In the UHP, the one-point function of a scalar primary field is

〈Φ(z)〉UHP = AΦ
b [2 Im z]−x, (5)

where x denotes the bulk scaling dimension of the scalar primary field. The
normalization factor AΦ

b depends both on the field Φ and the boundary condition
on the boundary b. When the primary field is not vanishing on the boundary,
the conformal mapping from the UHP to the strip becomes

〈Φ(z)〉strip =

∣∣∣∣dwdz
∣∣∣∣−x〈Φ(z)〉UHP

= AΦ
b

∣∣∣∣ πz2τ0

∣∣∣∣x(2e
πr
2τ0 sin

πτ

2τ0

)−x
= AΦ

b

(
π

4τ0

)x ∣∣∣e πr2τ0 e
iπτ
2τ0

∣∣∣x(e πr2τ0 sin
πτ

2τ0

)−x
= AΦ

b

[
π

4τ0

1

sin πτ
2τ0

]x
.
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Now we can continue to real time by plugging in τ = τ0 + it. We use that

sin
πτ

2τ0
=

1

2i

(
e
iπτ
2τ0 − e

−iπτ
2τ0

)
τ=τ0+it−−−−−→ 1

2i

(
e
iπτ0
2τ0 e

−πt
2τ0 − e

−iπτ0
2τ0 e

πt
2τ0

)
(6)

=
1

2

(
e
−πt
2τ0 + e

πt
2τ0

)
≈ 1

2
e
πt
2τ0 ,

where in the last line we used that t � τ0. Hence, the one-point function
becomes

〈Φ(t)〉 ' AΦ
b

(
π

2τ0

)x
e−xπt/2τ0 . (7)

We see that observables described by a primary field, such as the order param-
eter, decay exponentially in time to zero (which is also the ground-state value).
The relaxation time related to this process is tOrel = 2τ0/xOπ for an operator O.

3.1.1 The energy density

The local energy density is an important exception to the exponential decay
in time[2]. The energy density corresponds to the tt component of the energy-
momentum tensor Tµν . In CFT this is not a primary operator. And conse-
quently, if it is normalized so that 〈Tµν〉UHP = 0, in the strip we see that

〈Ttt(r, τ)〉 =
πc

24(2τ0)2
,

where c is the central charge of the CFT. As can be seen, this expectation
value is not dependent on t, so it doesn’t decay in time. Since the dynamics
conserves energy, this is the result we would have expected. When taking the
one-point functions of other globally conserverd quantities, which commute with
the hamiltonian, similar features are expected.
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3.2 The two-point function

3.2.1 The Gaussian Model

First, we consider the two-point function of a primary field in a boundary gaus-
sian theory.

For a free boson the two point-function in the UHP is

〈Φ(z1)Φ(z2)〉UHP =

(
z12̄z21̄

z12z1̄2̄z11̄z22̄

)x
, (8)

where zij = |zi − zj | and zk̄ = z̄k. Also, note that Φ is not the gaussian field
θ(z), but its exponential Φ(z) = eiθ(z) is.

The two-point function on the strip at equal imaginary time τ , at distance r
apart under the conformal map 3 is given by

〈Φ(r, τ)Φ(0, τ)〉strip =

∣∣∣∣dw(z1)

dz1

∣∣∣∣−x∣∣∣∣dw(z2)

dz2

∣∣∣∣−x〈Φ(z1(w))Φ(z2(w))〉UHP

=

∣∣∣∣πz1

2τ0

∣∣∣∣x∣∣∣∣πz2

2τ0

∣∣∣∣x( z12̄z21̄

z12z1̄2̄z11̄z22̄

)x
=

[(
π

2τ0

)2
cosh (πr/2τ0)− cos (πτ/τ0)

8 sinh2 (πr/4τ0) sin2 (πτ/2τ0)

]x
, (9)

where we have used that

z12̄z21̄ = |z1 − z2̄||z2 − z1̄| (10)

=
∣∣∣eπr/2τ0eiπτ/2τ0 − e−iπτ/2τ0∣∣∣∣∣∣eiπτ/2τ0 − eπr/2τ0e−iπτ/2τ0∣∣∣

= 1 + eπr/τ0 − 2eπr/2τ0 cos (πτ/τ0)

= eπr/2τ0
(
e−πr/2τ0 + eπr/2τ0 − 2 cos (πτ/τ0)

)
= 2eπr/2τ0 (cosh (πr/2τ0)− cos (πτ/τ0)) ,

z11̄z22̄ = |z1 − z1̄||z2 − z2̄|

= eπr/2τ0
∣∣∣eiπτ/2τ0 − e−iπτ/2τ0∣∣∣∣∣∣eiπτ/2τ0 − e−iπτ/2τ0 ∣∣∣

= 4eπr/2τ0 sin2 (πτ/2τ0) (11)
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and

z12z1̄2̄ = |z1 − z2||z1̄ − z2̄|

=
∣∣∣eπr/2τ0eiπτ/2τ0 − eiπτ/2τ0 ∣∣∣∣∣∣eπr/2τ0e−iπτ/2τ0 − e−iπτ/2τ0∣∣∣

= e
πr
τ0 − 2e

πr
2τ0 + 1

= 2e
πr
2τ0 (cosh

(
πr

2τ0

)
− 1)

= 4e
πr
2τ0 sinh

(
πr

4τ0

)2

, (12)

where in the last line we have used cosh (2x)− 1 = 2 sinh (x)
2
.

Going to real time τ = τ0 + it yields for equation 9

〈Φ(r, t)Φ(0, t)〉strip =

[(
π

2τ0

)2
cosh (πr/2τ0) + cosh (πt/τ0)

8 sinh2 (πr/4τ0) cosh2 (πt/2τ0)

]x
, (13)

where we have used cos (x+ π) = − cos (x) and sin (x+ π
2 ) = cos (x).

When we take r � τ0 and t� τ0 the two-point function becomes of the following
simplified form

〈Φ(r, t)Φ(0, t)〉strip =

(
π

2τ0

)2x
(
e
πr
2τ0 + e

πt
2τ0

e
πr
2τ0 · e

πt
2τ0

)x
. (14)

We can approximate the behavior of this two-point function by looking at two
different time intervals, namely t < r/2 and t < r/2. We then see that

〈Φ(r, t)Φ(0, t)〉strip ∝

{
e
−xπt
τ0 for t < r/2

e
−xπr
2τ0 for t > r/2

(15)

Thus, as can be seen from this formula, at fixed r the two-point function de-
cays exponentially in time up to t equals r/2 and then doesn’t depend on time
anymore, i.e. stays constant in time, but only depends exponentially on the
separation r.
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In the case of fixed initial conditions, with one-point function given by equa-
tion 7, we have to consider the connected correlation function. The connected
correlation function is the full correlation function minus the disconneted parts

〈Φ(r, t)Φ(0, t)〉conn = 〈Φ(r, t)Φ(0, t)〉strip − 〈Φ(0, t)〉2, (16)

where the squared of the one-point function comes from the fact that the one-
point function is not dependent on r, i.e. 〈Φ(0, t)〉 = 〈Φ(r, t)〉.

Again, by looking at the two different time intervals t < r/2 and t > r/2 we
can approximate the behavior of this function. We then see that

〈Φ(r, t)Φ(0, t)〉conn ∝

{
0 for t < r/2

e
−xπr
2τ0 − e

−xπt
τ0 for t > r/2

(17)

When t equals r/2 the correlations start evolving exponentially with time and
when t� τ0 the correlations take its asymptotic value depending exponentially
on the separation.
In the case of disordered initial conditions (ψ0(r) = 0), and thus 〈Φ(t)〉 = 0 for
all times. This leads to the property that full correlation functions are equal to
the connected ones.

3.2.2 The Ising Model

Now we’ll consider the two-point function for the Ising model. In this case, the
two-point function in the UHP is given by

〈Φ(z1)Φ(z2)〉UHP =

(
z12̄z21̄

z12z1̄2̄z11̄z22̄

)1/8

F (η),

with

F (η) =

√
1 + η1/2 ±

√
1− η1/2

√
2

and

η =
z11̄z22̄

z12̄z21̄

.

The sign ± in the definition of F (η) depends on the boundary conditions. If we
consider fixed boundary conditions, we get a + and if in the case of disordered
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boundary conditions we get a −. To calculate η, we use equation 11 and 10 to
get

η =
2 sin2 (πr/2τ0)

cosh (πr/2τ0)− cos (πτ/τ0)
. (18)

Using the results from the gaussian case, we obtain

〈Φ(r, τ)Φ(0, τ)〉strip =
1√
2

[(
π

2τ0

)2
cosh (πr/2τ0)− cos (πτ/τ0)

2 sinh2 (πr/4τ0) sin2 (πτ/2τ0)

]1/8

·

[√
1 +

√
2 sin (πr/2τ0)√

cosh (πr/2τ0)− cos (πτ/τ0)
±

√
1−

√
2 sin (πr/2τ0)√

cosh (πr/2τ0)− cos (πτ/τ0)

]
.

We analytically continue to real time by τ = τ0 + it and get

〈Φ(r, τ)Φ(0, τ)〉strip =
1√
2

[(
π

2τ0

)2
cosh (πr/2τ0) + cosh (πt/τ0)

2 sinh2 (πr/2τ0) cosh2 (πt/2τ0)

]1/8

·

[√
1 +

√
2 cosh (πr/2τ0)√

cosh (πr/2τ0) + cosh (πt/τ0)
±

√
1−

√
2 cosh (πr/2τ0)√

cosh (πr/2τ0) + cosh (πt/τ0)

]
,

where we used equation 6 and similar identities. We take r/τ0 and t/τ0 again
to be much larger than 1, and we get a simplified version:

〈Φ(r, τ)Φ(0, τ)〉strip =

(
π

2τ0

)1/4
1√
2

(
eπr/2τ0 + eπt/τ0

eπr/2τ0eπt/τ0

)1/8

·

[√
1 +

eπt/2τ0√
eπr/2τ0 + eπt/τ0

±

√
1− eπt/2τ0√

eπr/2τ0 + eπt/τ0

]
.

For fixed boundary conditions, we take the +-sign and by Taylor expanding
the small exponential terms in the square root, we obtain the result for the
free boson (up to a factor

√
2), given by equation RESULT OF GAUSSIAN

CASE with x = 1/8. We get the connected part by subtracting 〈Φ(0, t)〉2 with
AΦ
b = 21/4 for the Ising model.

〈Φ(r, t)Φ(0, t)〉conn,fix = 〈Φ(r, t)Φ(0, t)〉 − 〈Φ(0, t)〉2

'
√

2

(
π

2τ0

)1/4(
eπr/2τ0 + eπt/τ0

eπr/2τ0eπt/τ0

)1/8

−
√

2

(
π

2τ0

)1/4

e−πt/8τ0

and so we see that also in the case of the Ising model, the connected correlations
develop when t > r/2:

〈Φ(r, t)Φ(0, t)〉conn,fix ∝

{
0 for t < r/2

e
−πr
16τ0 − e

−πt
8τ0 for t > r/2
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In the case of disordered boundary conditions, the connected correlation func-
tion is yet again the same as the full correlation function. We find

〈Φ(r, t)Φ(0, t)〉disorder ∝

{
e
−π(r−3/2t)

4τ0 for t < r/2

e
−πr
16τ0 for t > r/2

We see that for a disordered initial condition, we get a space dependence of the
correlation function even for t < r/2.

3.2.3 The general two-point function

Using the result from the Gaussian model and the Ising model, we will now
try to derive some general statements on the form of the two-point function.
Specifically, we will want to make comments on the time-dependence on the
general correlation functions. To start with, we can say that the two-point
function in the UHP has the general form

〈Φ(z1)Φ(z2)〉UHP =

(
z12̄z21̄

z12z1̄2̄z11̄z22̄

)x
F (η). (19)

The function F (η) is, in general, an unknown function that depends on the
specifics of the model under consideration. Because we already know how the
first part of equation 19 transforms (see equation 9), we only need to investigate
F (η) for every specific model. Fortunately, we can still make some general
statements about F (η) by making a few approximations.

Looking back at the investigation of the Ising model, we see that if we take
t, r � τ0 in equation 18, we get the following form for η:

η ∼ eπt/τ0

eπr/2τ0 + eπt/τ0
.

For t < r/2, we get η ∼ eπ(t−r/2)/τ0 � 1 and for t > r/2, we get η ∼ 1.
Therefore, in order to review the asymptotic time behaviour of the correlation
function, we only need to consider two cases. For the behaviour deep in the
bulk, we have small r and hence t > r/2 and η ∼ 1. For the behaviour close to
the surface we have big r so t < r/2 and η ∼ 0. The corresponding limits for
F (η) are exactly known and given by [3]:

• for two points deep in the bulk: F (1) = 1

• for two points near the surface: F (η) ' (AΦ
b )2ηxb with xb the boundary

scaling dimension of the leading boundary operator to which Φ couples
and AΦ

b the coefficient introduced in equation 5.

Using the result 15, we can then make the following statements about the time-
dependence of the two-point function:

〈Φ(r, t)Φ(0, t)〉 ∝
{

(AΦ
b )2e−xπt/τ0eπxb(t−r/2)/τ0 for t < r/2

e−xπr/2τ0 for t > r/2
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Note that this result is useful, but one should note that the sull analytic structure
of the CFT is only obtained by doing a full calculation such as we did for the
Gaussian model and the Ising model. Moreover, the behaviour close to t = r/2
can only be analysed by using the detailed form of F (η) depending on the model.

3.3 Correlation functions at different times

In the previous sections we have considered the correlation functions at equal
times, so the natural step to take is to consider the two-point functions at
different real times 〈Φ(r, t)Φ(0, s)〉. Again, following the same approach as for
the equal times, this is achieved by mapping the imaginary time strip to the
UHP, but this times the two points are w1 = r+ iτ1 and w2 = 0 + iτ2. We have
to go to real time τ1 = τ0 + it and τ2 = τ0 + is at the end of the calculation.
This map is shown in Figure 2, where θ1 = πτ1

2τ0
and θ2 = πτ2

2τ0
.

Figure 2: Left: Infinite imaginary time strip for points of the correlation func-
tions at different times. Right: Conformal mapping of the infinite time strip to
the upper-half plane (c.f. Eq. 3), where θi = πτi/2τ0.

Similarly, first we have to calculate the distances zij in order to solve equation
8.

z12̄z21̄ = |z1 − z2̄||z2 − z1̄| (20)

=
∣∣∣eπr/2τ0eiπτ1/2τ0 − e−iπτ2/2τ0∣∣∣∣∣∣eiπτ2/2τ0 − eπr/2τ0e−iπτ1/2τ0 ∣∣∣

= 1 + eπr/τ0 − 2eπr/2τ0 cos (θ1 + θ2)

= eπr/2τ0
(
e−πr/2τ0 + eπr/2τ0 − 2 cos (θ1 + θ2)

)
= 2eπr/2τ0 (cosh (πr/2τ0)− cos (θ1 + θ2)) ,
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z11̄z22̄ = |z1 − z1̄||z2 − z2̄|

= eπr/2τ0
∣∣∣eiπτ1/2τ0 − e−iπτ1/2τ0∣∣∣∣∣∣eiπτ2/2τ0 − e−iπτ2/2τ0∣∣∣

= 4eπr/2τ0 sin (θ1) sin (θ2) (21)

and

z12z1̄2̄ = |z1 − z2||z1̄ − z2̄|

=
∣∣∣eπr/2τ0eiπτ1/2τ0 − eiπτ2/2τ0 ∣∣∣∣∣∣eπr/2τ0e−iπτ1/2τ0 − e−iπτ2/2τ0 ∣∣∣

= 1 + e
πr
τ0 − 2e

πr
2τ0 cos (θ1 − θ2)

= eπr/2τ0
(
e−πr/2τ0 + eπr/2τ0 − 2 cos (θ1 − θ2)

)
(22)

= 2eπr/2τ0 (cosh (πr/2τ0)− cos (θ1 − θ2)) .

Hence, the two-point function on the strip is given by

〈Φ(r, τ1)Φ(0, τ2)〉strip =

∣∣∣∣dw(z1)

dz1

∣∣∣∣−x∣∣∣∣dw(z2)

dz2

∣∣∣∣−x〈Φ(z1(w))Φ(z2(w))〉UHP

=

[(
π

2τ0

)2
cosh (πr/2τ0)− cos (π(τ1 + τ2)/2τ0)

4 sin (πτ1/2τ0) sin (πτ2/2τ0)(cosh (πr/2τ0)− cos (π(τ1 − τ2)/2τ0))

]x
,

(23)

where for τ1 = τ2 this formula reduces back to equation 9, as was expected. If
we analytically continue to real time by τ1 = τ0 + it and τ2 = τ0 + is we get

〈Φ(r, t)Φ(0, s)〉strip =

[(
π

2τ0

)2
cosh (πr/2τ0) + cosh (π(t+ s)/2τ0)

4 cosh (πt/2τ0) cosh (πs/2τ0)(cosh (πr/2τ0)− cosh (π(t− s)/2τ0)

]x

=

[(
π

2τ0

)2
cosh (πr/2τ0) + cosh (π(t+ s)/2τ0)

2(cosh (π(t− s)/2τ0) + cosh (π(t+ s)/2τ0))(cosh (πr/2τ0)− cosh (π(t− s)/2τ0)

]x
,

(24)

where in the last line we have used that cosh (x) cosh (y) = 1
1 (cosh (x− s) +

cosh (x+ y). Next, if we consider r, t, s, |t− s| � τ0 we obtain
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〈Φ(r, t)Φ(0, s)〉strip =

(
π

2τ0

)2x
(

e
πr
2τ0 + e

πt
2τ0

e
π(t+s)

2τ0 · (e
πr
2τ0 + e

π|t−s|
2τ0 )

)x
. (25)

We can approximate the behavior of this correlation function for three different
regions

〈Φ(r, t)Φ(0, t)〉strip ∝


e
−xπ(t+s)

4τ0 for r > t+ s

e
−xπr
4τ0 for t− s < r < t+ s

e
−xπ|t−s|

4τ0 for r < |t− s|

(26)

We can generalize this two-point function to the most general CFT following the
procedure discussed in the subsection above. Again we distinguish two different
cases, namely a theory with fixed initial conditions (i.e., 〈Φ〉 6= 0) and one with
disordered initial conditions (i.e., 〈Φ〉 = 0). In the first case only the crossover
points are changed by the expression for F (η), leaving the asymptotic results
for the other points unchanged. In the second case, only the first region (i.e.,
r > t+ s) picks up an extra factor of e−πxb(t+s−r)/4τ0 .

3.4 Evolution with boundaries

A final modification we will consider in this section is adding a boundary condi-
tion at r = 0. For simplicity, we will assume that this boundary condition is the
same as the initial boundary condition. An example would be, for an Ising-like
system, to fix all the spins at t = 0 and at the boundary r = 0 (for all t) to
point in the same direction. The spacetime region of this CFT is depicted in
Figure 3.

We will define a new map into the UHP, given by

z(w) = sin

(
πw

2τ0

)
(27)

with w = τ + ir such that the corners, lying now at /±τ0 (instead of τ = 0, 2τ0)
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Figure 3: Left: The space-time region for the one-point function in a boundary
(at r = 0 geometry. Note that w = τ + ir. Right: Conformal mapping to the
upper-half plane, c.f. Eq. 27).

are mapped to z = ±1. With this new mapping, w1 becomes

z1 ≡ z(w1) = z(τ1 − τ0 + ir)

= sin (−π/2 + πτ1/2τ0 + iπr/2τ0)

= − cos (πτ1/2τ0 + iπr/2τ0)

=
1

2

(
−eiπτ1/2τ0e−πr/2τ0 − e−iπτ1/2τ0eπr/2τ0

)
=

1

4
(−eiπτ1/2τ0eπr/2τ0 − eiπτ1/2τ0e−πr/2τ0

− e−iπτ1/2τ0eπr/2τ0 − e−iπτ1/2τ0e−πr/2τ0

+ eiπτ1/2τ0eπr/2τ0 − eiπτ1/2τ0e−πr/2τ0

− e−iπτ1/2τ0eπr/2τ0 + e−iπτ1/2τ0e−πr/2τ0)

= − cos (πτ1/2τ0) cosh(πr/2τ0) + i sin(πτ1/2τ0) sinh(πr/2τ0).

In this representation, it is now easy to determine the one-point function in the
UHP.

〈Φ(z1)〉UHP ∝ |Im z1|−x → [sin(πτ1/2τ0) sinh(πr/2τ0)]
−x
.

We also observe that

|w′(z1)|2 =

(
2τ0
π

)2
1

|1− z2
1 |
∝ 1

cosh(πr/τ0)− cos(πτ1/τ0)
.

Then the one-point function on the strip becomes

〈Φ(w1)〉strip = |w′(z1)|−x〈Φ(z1)〉UHP ∝
[
sin2(πτ1/2τ0) sinh2(πr/2τ0)

cosh(πr/τ0)− cos(πτ1/τ0)

]−x/2
.
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We can now continue to real time by taking τ1 = it and get

〈Φ(t, r)〉 ∝
[

cosh(πr/τ0) + cosh(πt/τ0)

cosh2 (πt/2τ0) sinh2(πr/2τ0)

]x/2
which, taking t, r � τ0, can be approximated as

〈Φ(t, r)〉 ∝
[
eπr/τ0 + eπt/τ0

eπrτ0eπt/τ0

]x/2
=

{
e−πxt/2τ0 for t < r
e−πxr/2τ0 for t > r

We should note that in this case, the characteristic time of the ’horizon’ is not
t = r/2 but t = r.
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4 Characteristics of the 1+1D CFT results

We will now try to draw some general conclusions from the stud the study
performed in the previous chapters. In order to investigate how the the state
|ψ(t)〉 = e−iHt |ψ0〉 evolves in the thermodynamic limit, we considered the sim-
pler question of how correlation functions evolve and whether they reach con-
stant values for very large times. We studied in general the quench dynamics of
one- and two-point functions in a 1+1 CFT. The results of our study rely on the
assumption that the leading asymptotic behavior, i.e. large imaginary times,
given by 1+1 CFT, may simply be analytically continued to real time to find
the characteristics at large real time. Making this assumption, we found for the
one-point function of a scalar primary field that, when taking the thermody-
namic limit, it decays to the ground-state value exponentially in time. For the
two-point functions, we can observe two general features. First, at t = r/2 there
is a sharp horizon (or light-cone) effect due to the fact that the behavior before
and after this t is totally different. Mostly, if we consider the full correlation
function, for one region this function depends exponentially on t, whereas for
the other region it does not depend on t but only on the separation r. Second,
we discovered that connected two-point functions of primary operators at sepa-
ration r vanish for t < r/2, whereas they arrive exponentially fast at a constant
value depending exponentially on the distance r for t > r/2.
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