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Random spin chain models are obtained by introducing quenched disorder in the interaction parameters of a
given spin chain. A renormalization group approach developed by Dasgupta and Ma proves to be useful in
studying this kind of systems. In this digest, this renormalization group method is explained in the context
of the random Heisenberg XX model, which leads to a renormalization flow equation for the distribution of
interaction strengths. The derivation of a special fixed point of this equation is provided and some properties
of this fixed point, known as the random singlet phase, are discussed.

I. INTRODUCTION

Spins in a lattice models are extensively studied be-
cause they provide important insight into prototypical
phenomena despite the simplicity of their formulation.

Consider the one dimensional quantum Heisenberg
XYZ antiferromagnetic chain defined by the Hamiltonian

H =

L−1∑
r=1

Kα
r S

α
r S

α
r+1 (I.1)

where the implicitly summed α represents the Carte-

sian coordinates X, Y, Z. ~Sr are spin- 1
2 operators and

the coupling constants ~Kr are fixed in time but randomly
distributed in space (a condition known as quenched ran-
domness) according to some distributions P x(Kx), with
0 ≤ Kx ≤ Jx (and similar for y and z).

This Hamiltonian describes a general system which can
be modified into other widely studied models by imposing
conditions on its parameters. We focus in the one dimen-
sional quantum Heisenberg XX antiferromagnetic chain
obtained by making all Kz

n = 0 and Kx
n = Ky

n. Here we
need only to consider one distribution P x(Kx) = P (K),
with 0 ≤ K ≤ J . The Hamiltonian now is given by

H =

L−1∑
r=1

Kr
~Sr · ~Sr+1 (I.2)

with the ~Sr in the XY plane*.
The notion of phases and phase transitions is always

of interest when studying many body systems. Here we
are interested in exposing a special phase that can be
observed in many random spin chain models for the spe-
cific case of the system described in (I.2). To do so,
we will use a real space renormalization group approach
known as Dasgupta-Ma renormalization (also strong dis-
order renormalization group).

*It is important to remember that ~S still has a Z component and we
still use the basis of eigenstates of Sz . The reason we regard these
~Sr as living in the XY plane is to simplify the notation, given that
the ~Sz

r do not appear in the Hamiltonian because their coefficients
Kz are all zero.

II. DASGUPTA-MA RENORMALIZATION

Dasgupta and Ma1 developed a renormalization
scheme that allows to study the properties of the ran-
dom Heisenberg antiferromagnet Hamiltonian defined in
(I.2). We start by taking the strongest bond between
neighboring spins in the chain, labeled by J according to
the bond distribution, and labeling the spins it connects
~S1 and ~S2 (see figure 1). For the moment we ignore the

other neighbors of these, ~S′1 and ~S′2. The local Hamilto-
nian considering only these two spins is

H0 = J ~S1 · ~S2 (II.1)

This is a simple quantum mechanical system of two in-
teracting spins that has the singlet state |s〉 as its ground
state and the three triplet states |ti〉 as its excited states.
Remember that in the usual basis of eigenstates of Szi

|s〉 =
1√
2

(|↑↓〉 − |↓↑〉)

|t1〉 = |↑↑〉

|t0〉 =
1√
2

(|↑↓〉+ |↓↑〉)

|t−1〉 = |↓↓〉

Writing

Sx =
1

2
(S+ + S−)

Sy =
1

2i
(S+ − S−)

(II.2)

one can express ~S1 · ~S2 explicitly as

~S1 · ~S2 =
1

2
(S+

1 S
−
2 + S−1 S

+
2 ) (II.3)

And with this it is easy to find that
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Es = −1

2
J

Et1 = Et−1 = 0

E0 =
1

2
J

(II.4)

Where Es is the energy of |s〉 and Eti are the energies
of the states |ti〉.

Now the interactions with the neighbors ~S′1 and ~S′2
can be added back. Using that J was the strongest bond
in the chain, the interactions due to K1 and K2 can be
treated perturbatively.

H̃ = H0 +H (II.5)

where the perturbation H is defined as

H = K1
~S′1 · ~S1 +K2

~S2 · ~S′2 (II.6)

Using second order perturbation theory, the perturba-
tion changes the energy of the ground state as

Es → Es + 〈s|H |s〉+
∑
i

|〈s|H |ti〉|2
1

Es − Et
(II.7)

Carefully computing the matrix elements of H in the

basis of eigenstates of H0 momentarily regarding ~S′1 and
~S′2 as fixed vectors and using (II.2) leads to 〈s|H |s〉 =
〈s|H |t0〉 = 0 and

|〈s|H |t1〉|2 =
1

8

[
K2

1S
′+
1 S′−1 +K2

2S
′+
2 S′−2

−K1K2(S′+1 S′−2 + S′+2 S′−1 )
] (II.8)

|〈s|H |t−1〉|2 =
1

8

[
K2

2S
′−
1 S′+1 +K2

2S
′−
2 S′+2

−K1K2(S′−1 S′+2 + S′−2 S′+1 )
] (II.9)

Putting all this together and grouping according to the
K coefficients leads to

∑
i

|〈s|H |ti〉|2
1

Es − Et
=
−2

J

[K2
1

8
(S′1

+S′1
− + S′1

−S′1
+)

+
K2

2

8
(S′2

+S′2
− + S′2

−S′2
+)

−K1K2

4
(S′1

+S′2
− + S′2

+S′1
−)
]

(II.10)
Notice that the terms within round parenthesis with

K2
1 and K2

2 as coefficients are sums of the form S′i
+S′i

−+
S′i
−S′i

+ (i = 1,2). In each of them, both operators act on

FIG. 1. Spins and couplings involved in one decimation. Top
chain depicts the subsystem before the decimation and bot-
tom depicts it after it.

the same spin. Since S+ annihilates an up spin and S−

annihilates a down spin, when acting with this combina-
tion of operators on a state of the form |↑〉 or |↓〉 (or any
superposition of them), one of the terms is always going
to be zero and the other will leave the state unchanged.
Taking this in account, we can write

∑
i

|〈s|H |ti〉|2
1

Es − Et
=
−2

J

[K2
1

8
+
K2

2

8
−K1K2

2
(~S′1·~S′2)

]
(II.11)

Where in the last term, S+
i and S−i were written in

terms of Sxi and Syi inverting (II.2).
Rearranging and plugging all results in (II.7), we ob-

tain the perturbation to the ground state energy

Es → E′s +K ′ ~S′1 · ~S′2 (II.12)

where

E′s = −1

2
J − 1

4J
(K2

1 +K2
2 ) (II.13)

K ′ =
K1K2

J
(II.14)

We proceed by deleting the spins ~S1 and ~S2 from the
original Hamiltonian (I.2) and adding the constant en-

ergy E’ and an effective coupling between ~S′1 and ~S′2
with coupling constant K’ (see figure 1). What has been
described so far is a single decimation of the renormal-
ization procedure. We are left with a new Hamiltonian
with fewer degrees of freedom and reduced energy scale
since we removed its largest bond and replaced it with
a weaker effective bond. This means the distribution
of bonds P(K) has also been modified. The procedure
is continued by repeating the decimation on the modi-
fied Hamiltonian with modified P(K), now picking the
strongest bond in the set of original bonds with J re-
moved and K’ added. We can call this modified set of
bonds {K̃r} and the strongest bond Ω = max{K̃}. We
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will consider the strongest bond of the original distribu-
tion equal to 1, so that 0 < Ω ≤ 1.

Result (II.14), which tells us the strength of the effec-
tive bond that replaces the strongest bond, is known as
the Dasgupta-Ma rule for the XX Heisenberg chain.
Dasgupta-Ma renormalization can be derived more gen-
erally starting from the XYZ Heisenberg chain defined in
(I.1). The Dasgupta-Ma rule for the XYZ model is given

by K ′x =
Kx

1K
x
2

Jy+Jz and similarly for K ′y and K ′z 2. No-
tice how this reduces to the case we derived when setting
Kz
r = 0 and Kx

r = Ky
r , which is the XX model.

We are interested in how the bond distribution changes
under repeated decimations of this renormalization pro-
cess. Recognizing that the distribution is dependent
on the energy scale (which is accurately described by
the strongest bond Ω), we can write the distribution as
P(K,Ω). Now, it is convenient to change our variables
into logarithmic expressions2,3, so we define, using that
Ω is the strongest bond in the current Hamiltonian

Γ = − ln Ω (II.15)

ζr = ln
( Ω

K̃r

)
(II.16)

Notice that as more decimations are performed, the
strongest bond Ω is lowered, so Γ increases with the dec-
imations. Also notice that large ζr corresponds to small
Kr.

With this definitions, Dasgupta-Ma rule (II.14) be-
comes

ζ ′ = ζ1 + ζ2 − ζΩ = ζ1 + ζ2 (II.17)

Where ζΩ comes from the strongest bond Ω, and is
seen from the definition (II.16) that it is zero.

Now the distribution of bonds for a given energy scale
in these logarithmic variables can be expressed as ρ(ζ,Γ).
The probability of a bond ζ at a fixed scale Γ is written as

ρ(ζ,Γ)dζ = dρ(ζ,Γ). What we need is an expression for
this probability when the scale is changed to Γ + δΓ. We
first realize that the change in the distribution has two
different sources. The first is the change in the definition
of ζr in (II.16) due to the change in Γ when the strongest
bond gets removed and a new strongest bond is defined,
which can be expressed as

ζ → ζ ′ = ln
(Ω′

K̃

)
= ln

( Ω

K̃

)
− Γ + Γ′ = ζ + δΓ (II.18)

Where the primes denote the values after the decima-
tion.

This first contribution can be expressed in terms of the
probability as

dρ(ζ,Γ + δΓ)
(1)
= dρ(ζ + δΓ,Γ) (II.19)

The second contribution comes from the fact that in
the process of eliminating the strongest bond, a new bond
of some lower strength is added. This is expressed as

dρ(ζ,Γ + δΓ)
(2)
= ρ(0,Γ)δΓ×∫ ∞

0

dζL

∫ ∞
0

dζRδ
(
ζ − (ζL + ζR)

)
ρ(ζL,Γ)ρ(ζR,Γ)

(II.20)
In this expression, we recognize ρ(0,Γ)δΓ as the the

probability of a bond with ζ from zero to δΓ. ζ = 0 is
the strongest bond, so in the limit where δΓ is infinites-
imally small, this indicates the value of the distribution
at the strongest bond in the current energy scale. The
integrals are done over all values of ζL and ζR, which
are the left and right possible neighbors to the strongest
bond. Notice the Dasgupta-Ma rule (II.17) inside the
delta function in the integral. What this does is ensure
that for each value of ζ, we are adding to the new dis-
tribution the corresponding probability of obtaining an
effective bond with that value.

Putting the two contributions together and taking the
limit δΓ→ 0 we obtain the integro-differential equation

∂ρ(ζ,Γ)

∂Γ
=
∂ρ

∂ζ
+ ρ(0,Γ)

∫ ∞
0

dζL

∫ ∞
0

dζRδ
(
ζ − (ζL + ζR)

)
ρ(ζL,Γ)ρ(ζR,Γ) (II.21)

This equation is to be interpreted as a renormalization
group flow equation.

III. FIXED POINTS OF THE RENORMALIZATION
GROUP FLOW EQUATION

As will be shown, the randomness in the present system
always leads to a critical point. This is actually the case
for many other random spin chain models. In Renor-
malization terms, this means randomness is a relevant
perturbation to pure critical points4. Fixed points of a
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RG (renormalization group) flow equation are precisely
the critical points of the system, given that a fundamen-
tal property of a critical point is their independence on
scale. Precisely, we are going to look for fixed points of
(II.21) under renormalization (increase of Γ). The fol-
lowing procedure follows Fisher’s derivation of the fixed
points of this equation2.

Consider equation (II.21) written in a simplified man-
ner as follows

∂ρ

∂Γ
=
∂ρ

∂ζ
+ ρ0ρ⊗ζ ρ (III.1)

Where ρ0 = ρ(0,Γ) and ρ⊗ζ ρ is the convolution seen
in (II.21). To look for appropriate scale invariant points
it is useful to explicitly rescale the distribution and the
variable ζ by some power κ of Γ

η =
ζ

Γκ
(III.2)

ρ(ζ,Γ) =
Q(η,Γ)

Γκ
(III.3)

Equation (III.1) becomes

Γ
∂Q

∂Γ
= κ

[
Q+ η

∂Q

∂η

]
+ Γ1−κ

[∂Q
∂η

+Q0Q⊗η Q
]

(III.4)

Making ∂Q
∂Γ = 0, we obtain the equation we wish to

solve. The equation is governed by the first term in
square parenthesis when κ > 1. Ignoring the second term
leads to an elementary equation with solution C/η, which
is unphysical since it diverges as η → 0: the strongest
bond. When κ < 1 the second term dominates and the
resulting equation can be solved using Laplace transforms
and Adomian polynomials5, but the solution is also un-
physical beacuse it oscillates in sign for big η.

This leaves us only with κ = 1 as a possible scale ex-
ponent, which turns equation (III.4) into

0 = Q+ η
∂Q

∂η
+
∂Q

∂η
+Q0Q⊗η Q (III.5)

Due to the convolution in this equation, it is conve-
nient to use Laplace transforms. Performing the Laplace
transformation, we find

z
∂Q̂

∂z
= zQ̂+Q0[Q̂2 − 1] (III.6)

with the condition

Q0 = lim
η→0+

1

2πi

∫ c+i∞

c−i∞
Q̂ezηd (III.7)

The convolution lead to a quadratic term in (III.6). In
order to solve this we can perform the substitution

Q̂ =
−z
uQ0

du

dz
(III.8)

which yields the linear second order differential equa-
tion

d2u

dz2
+

1− z
z

du

dz
− Q2

0

z2
u = 0 (III.9)

which is of a form that can be studied using Frobenius
method

Using the form

u =
∑
k=0

Akz
k+r (III.10)

and substituting in (III.9), we find

[
r(r − 1) + r −Q2

0

]
A0z

r−2 +

∞∑
k=1

[
(k + r)(k + r − 1) + (k + r)−Q2

0)Ak − (k + r − 1)Ak−1

]
zk+r−2 = 0 (III.11)

This is satisfied if the coefficients to all powers of z
vanish. Requiring A0 6= 0 (opposite case leads to a trivial
solution), the first term yields the condition r = ±Q0.
Using this and requiring that all coefficients in the sum
of the second term also vanish gives us the recurrence
relations

A±k+1 =
k ±Q0

(k + 1)(k + 1± 2Q0)
A±k (III.12)

The solution to (III.9) according to the method of
Frobenius depends on the difference between the two val-
ues of r found: if 2Q0 6= integer, the solution is given by

u = z−Q0

∞∑
k=0

A−k z
k + zQ0

∞∑
k=0

A+
k z

k (III.13)

On the other hand, if 2Q0 = integer, the solution is
given by
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u =
(
zQ0

∞∑
k=0

A+
k z

k
)(

1 + C ln(z)
)

+ z−Q0

∞∑
k=0

Dkz
k

(III.14)
Where C and Dk are to be determined.
Recapitulating, we have found that according to

(III.13) and (III.14), Q0 = Q(0) parametrizes a family
of solutions to equation (III.9), which are to be plugged
back into (III.6) to obtain the Laplace transform of the
distribution. The inverse Laplace transform of this re-
sult is thus the fixed points we were looking for. Fisher2

determined that for all Q0 6= 1, the obtained distribution
Q(η) decays as 1/η2Q0+1.

Looking back at the original RG flow equation (II.21),
we can analyze the behavior of ρ for large ζ. Suppose ρ
decays slower than exponentially in the large ζ regime.
If this is the case, the convolution ρ⊗ζ ρ is dominated by
the regions in its integration domain where ζL is small
and so ζR is large and vice versa. This means that for
large ζ we can write

ρ⊗ζ ρ ∼ 2

∫
large

dζL

∫
small

dζRδ
(
ζ − (ζL + ζR)

)
ρ(ζL)ρ(ζR)

∼ 2ρ(0)ρ(ζ)
(III.15)

Which means that the convolution decays the same as
ρ. Thus, the slow decay of ρ makes ∂ρ

∂ζ negligible in equa-

tion (II.21), which means the form of a subexponentially
decaying tail can not be changed by the renormalization:
a slowly decaying renormalized distribution must start
from an originally slowly decaying distribution. Fisher2

states that this leads to distributions which are singular
at small bond strengths and are not to be discussed fur-
ther in this work. We turn then to the special case where
Q0 = 1.

When Q0 = 1, 2Q0 is integer and we have to use the
solution (III.14). Considering that it is possible that C
= 0 in this expression and that it would yield a solution
with the form (III.13), we first check if this is the case.
We first check the first term of (III.13) by computing the
A−k . We see that for Q0 = 1, the series terminates since

A−k = 0 for k ≥ 2. We find

u1 = z−Q0

∞∑
k=0

A−k z
k =

1

z
+ 1 (III.16)

Taking two derivatives and substituting in (III.9)
shows u1 is in fact a solution. For the second term of
(III.13) we obtain using the recursion relation for A+

k
that

u2 = zQ0

∞∑
k=0

A+
k z

k = 2
(
− 1

z
− 1 +

ez

z

)
(III.17)

which also proves to be a solution to (III.9). This
proves that in fact C = 0 in (III.13) and there is no
logarithmic term in the solution. We can then write the
general solution as

u =
α(1 + z) + β(1 + z − ez)

z
(III.18)

We can now compute Q̂ using (III.8). This yields

Q̂ =
α′ + βez(1− z)
α′(1 + z) + βez

(III.19)

where α′ = α + β. Considering that the distribution
Q(η) has a cutoff value at η = 0, the behavior of the

Laplace transform at large z should be Q̂(z) ∼ Q0/z,
which is the Laplace transform of the Heaviside step func-
tion. This is only possible if we have β = 0. Taking
α′ = 1, we have Q̂ = 1/(1 + z) and so we obtain that the
fixed point in the RG flow equation corresponds to the
distribution

Q∗(η) = e−ηθ(η) (III.20)

Where θ is the Heaviside step function. This is known
as the random singlet fixed point distribution.
Fisher2 proves this is a stable fixed point by linearizing
the flow equation and showing that perturbations to this
solution decay exponentially. This can be written again
in terms of the original distribution by changing back
to the variable ζ inverting the transformation (III.2) re-
membering that we proved κ = 1

ρ∗(ζ,Γ) =
1

Γ
e−ζ/Γθ(ζ) (III.21)

We can go further and revert the transformation to
logarithmic variables (II.15) and (II.16) to obtain the dis-
tribution in terms of the bond strengths K and strongest
bond Ω

P ∗(K,Ω) =
α

Ω

[ Ω

K

]1−α
θ(Ω−K) (III.22)

where

α = 1/Γ = −1/ ln Ω (III.23)

Notice that the rescaling change of variable (III.2) is
necessary for the distribution to be a fixed point. Be-
fore Fisher2 found the fixed point (III.20), Dasgupta and
Ma1 had guessed (III.22) when trying to find a universal
power-law for the model, using α as the universal ex-
ponent. They called the distribution an ”almost fixed
point”, as they found that for small α, equation (III.22)
is approximately correct if one accounts for variations of
α as a function of Ω. This is exactly what we found by
obtaining (III.22) from finding first the fixed point in the
rescaled variables, which lead to this form with α defined
as in (III.23).
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FIG. 2. Schematic of a section of a chain in the random singlet
phase.

IV. THE RANDOM SINGLET PHASE

The upshot of the RG procedure we described and the
fixed point found is that the Heisenberg XX antiferro-
magnetic chain with quenched randomness at zero tem-
perature is driven at long distances to a critical point
known as the random singlet phase, described by the
distribution (III.21)4. This is true for other random spin
chain models and can be proven similarly by using the
appropriate Dasgupta-Ma rule to construct the renormal-
ization flow equation.

The random singlet phase consists on singlets ran-
domly formed over arbitrarily long length scales in a way
that bonds never cross (see figure 2). It is easy to imagine
this remembering each step of the Dasgupta-Ma renor-
malization. We paired the two spins with strongest bond
in a singlet and replaced them with an effective bond be-
tween the neighboring spins. After repeating this removal
of spins several times, the total effective bond between
two spins that are far away can become the strongest
bond of the chain and be then paired in a long ranged
singlet.

As a final result, we are going to estimate the typical

distance between spins at a given energy scale Γ in this
phase. The probability of having spins connected with
the strength Ω is ρ(0,Γ), so a fraction 2ρ(0,Γ)dΓ of the
spins left at scale Γ are removed at this renormalization
step. Referring to (III.21), near the fixed point ρ(0,Γ) ≈
1/Γ. We can then write the change in number of spins n
due to renormalization as

dn

dΓ
=
−2n

Γ
(IV.1)

which means

n(Γ) =
1

Γ2
(IV.2)

The typical length between the remaining spins at en-
ergy scale Γ is then

L(Γ) ∼ 1

n(Γ)
= Γ2 =

[
ln
( 1

Ω

)]2
(IV.3)

Many other interesting properties can be derived from
this system from the random singlet distribution, such as
spin correlations and entanglement entropy.
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