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1 Introduction

In this summary we will first discuss general background on CFT and some
prerequisites for understanding Zamolodchikov’s c-theorem, After that we will
give a prove of the c - theorem and give an application of the c - theorem.
Then we will discuss Cardy’s a-theorem and end with the current status of the
a-theorem.

1.1 Definitions

∂a =
∂

∂ga
(1)

ȧ =
∂

∂t
a (2)

Within expectation value signs:

A1 ≡ A1(x1) (3)

1.2 Background on CFT

A conformal field theory (CFT) is a field theory which is invariant under confor-
mal transformation. Conformal transformations are coordinate transformations
which leave the metric tensor invariant up to a scale factor Ω(x).

xa → x′a(x)

gαβ → gα′β′(x
′) = Ω(x)gαβ(x)

(4)

The physical nature of this invariance depends on the theory considered. If the
metric is fixed the conformal symmetry is a real physical symmetry, if the metric
is dynamical then the symmetry is a gauge symmetry. To find the constraints
on the coordinate transformation we calculate the change of the metric. Under
infinitesimal general coordinate transformation xµ → x′µ(x) = xµ(x) + εµ(x)
the metric changes as,

gρ′σ′(x) =
dxµ

dxρ′
dxν

dxσ′
gµν(x)

= (δµρ′ − ∂ρ′ε
µ(x))(δνσ′ − ∂σ′εν(x))gµν(x) =

= gρ′σ′(x)− ∂ρ′εσ′(x)− ∂σ′ερ′(x) +O(ε2)

= gρ′σ′(x)− f(x)gρ′σ′(x), ∂ρ′εσ′(x) + ∂σ′ερ′(x) = f(x)gρ′σ′(x)

(5)

where the RHS of the last line contains the constraints on ε(x).

Veryfing that the last line of eq. (5) is indeed conformal means that is must be
of the form of eq. (4) ,

gρ′σ′(x)− f(x)gρ′σ′(x) =

Ω(x)gρ′σ′(x),
(6)
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with Ω(x) = [1− f(x)].

Contracting the RHS of eq. (5) with δρ
′σ′ and assuming the flat metric, leads

to f(x) = 2
d∂ · ε and find δρ

′σ′ [∂ρ′εσ′(x) + ∂σ′ερ′(x)] = 2
d∂ · ε. To find the most

general solution to this equation we consider,

[δρσ + (d− 2)∂ρ∂σ]∂ · ε = 0 (7)

which is obtained after applying two derivatives and contracting one pair of
indices. Solutions to eq. (7) are at most quadratic in x if d > 2 [8]. One imme-
diately sees that d = 2 gives special properties to ε which are discussed in the
upcoming chapters.

The solutions are at most quadratic in x imply that (infinitesimal) translation
ερ = aρ, scaling ερ = λxρ, rotation ερ = mρ

σx
σ and the special conformal

transformation ερ = bρx2 − 2xρb · x are part of the conformal transformations.
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1.3 Core properties of a d-dimensional CFT

The stress-energy tensor in classical flat space (fixed metric) is found when vary-
ing the action with a globally defined δxu = εu, thus making use of translational
invariance. But there is a quicker way to determine the stress-energy tensor of
a field theory. By often demanding our theory to be invariant under the local
variation δxu = εu(x) [9]. The variation of the action then takes the form,

δS =

∫
ddxJu(x)∂uε(x) +ME (8)

if ε is globally defined then 8 is obviously zero and we have found a symmetry
of the theory. With epsilon now depending on the spacetime coordinates we use
partial integration to find that when our matter field equations (ME) are on
shell ∂αJ

α must be zero to have a symmetry.

Tong uses [9] the fact that if we now consider a general dynamical metric then
we can view the coordinate transformation δxu = εu(x) as a symmetry of the
metric. Knowing that the action is invariant if one makes the change δgab =
∂αεβ +∂βεα, as proved in (5), to the metric. Such that the two transformations
cancel each other.

This knowledge can be exploited by realizing that if we only transform the
metric in this way (5) we get the opposite varation when varying the action
with δxu = εu(x). So under our coordinate transformation our action changes
as,

δS = −
∫
ddx

δS

δgαβ
δgαβ

δS = −
∫
ddx

δS

δgαβ
(∂αεβ + ∂βεα)

δS = −2

∫
ddx

δS

δgαβ
∂αεβ

δS =
1

2π

∫
ddx
√
g(Tαβ∂αεβ), Tαβ = − 4π

√
g

δS

δgαβ

δS =
1

2π

∫
ddx
√
g(∂αT

αβ)εβ = 0

(9)

where we ignored the boundary term in the last line. Concluding that ∂αT
αβ =

0, which ensures the conservation of the stress-energy tensor.

Particularly interesting in CFT is the coordinate change related to scaling δxu =
εu(x) = λxu. Easily calculating the change of the metric as,

δgαβ = λ∂αxβ + λ∂βxα = 2λδαβ

δS = −2

∫
ddx

δS

δgαβ
λδαβ

δS = 2λ

∫
ddx

√
g

4π
Tαβδαβ

(10)
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demanding that the action vanishes we conclude that Tαβδαβ = Tαα = 0, the
stress-energy tensor vanishes in a classical CFT. This statement will also hold
in the quantum regime in flat spacetime.

In quantum curved space we get that the 〈Tαα 〉 = − c
12R where R is the ricci

scalar and c is the central charge. The central charge is equal to the number of
degrees of freedom. For example a single free boson has c = 1, a free fermion
has c = 1

2 .

1.4 2D CFT in complex coordinates

To get to the core of CFT we will only consider 2D(x0,x1) CFT in flat space
for now. The reason why is that any analytic change of coordinates will result
in a conformal transformation. We define the complex coordinates z = x0 + ix1

and z̄ = x0 − ix1 such that under this coordinate transformation our diagonal
metric δµν changes to,

x0 =
1

2
(z + z̄)

x1 =
1

2
(z − z̄)

ρ, σ = z, z̄

gρσ(x) =
dxµ

dxρ
dxν

dxσ
δµν =

dx0

dxρ
dx0

dxσ
+
dx1

dxρ
dx1

dxσ
=

(
0 1

2
1
2 0

) (11)

Continuing with our new metric and verifying that analytic coordinate trans-
formations are conformal transformations,

z → z′ = f(z)

z̄ → z̄′ = f̄(z̄)

gµν(x) =
dxρ

dxµ
dxσ

dxν
gρσ(x) =

dz

dxρ
dz̄

dxσ
=

dz

df(z)

dz̄

df̄(z̄)

(12)

such that

ds2 = dzdz̄ →
∣∣∣∣ dfdz

∣∣∣∣2 dzdz̄ (13)

which satisfies our conformal transformation defined in eq. (4).
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1.5 Properties of stress-energy tensor in complex coordi-
nates

Considering our previously chosen complex coordinates we get some interesting
propeties of the stress energy tensor. Starting with the conservation of the
stress-energy tensor,

∂αT
αβ = ∂zT

zβ + ∂z̄T
z̄β (14)

∂αT
αz = ∂zT

zz + ∂z̄T
z̄z = ∂zT

zz = 0 (15)

∂αT
αz̄ = ∂zT

zz̄ + ∂z̄T
z̄z̄ = ∂z̄T

z̄z̄ = 0 (16)

lowering the indices on the stress-energy tensor leads to ∂z̄Tzz = 0 and ∂zTz̄z̄ =
0. Hence Tzz is analytic and Tz̄z̄ is anti-analytic. Using similar arguments we
can calculate the conserved current related to the analytic variation z′ → z+ε(z)
with conserved currents Jz̄ = 0 and Jz = Tzz(z)ε(z). For anti-analytic variation
z̄′ → z̄ + ε̄(z̄) with conserved currents J̄z = 0 and J̄z̄ = T̄z̄z̄(z̄)ε(z̄). Hence the
analytic variation generates an analytic current and the anti-analytic varation
generates an anti-analytic current. Notice that we can also apply both variations
to create a mixture of analytic/anti-analytic currents.

Moving on to the constraint on the stress-energy tensor originating from the
traceless property

Tαβgαβ = T zz̄gzz̄ + T z̄zgz̄z = T zz̄ = 0. (17)

1.6 Callan-Symanzik equation

In the text that follows, we consider an arbitrary action functional S[φ], with
a corresponding Lagrangian L(x) such that S[φ] =

∫
d2xL[φ(x)] is obeyed, and

with φ a field. Consider also g, a set of variables that are coefficients associated
to each order of operator. Space S is the space spanned by these variables g.
Integrating the action to get the correlator, partition function and other related
functions is generally done up until a “UV-cutoff”, the highest energy at which
the theory is still valid. Correspondingly, only the operators in the Lagrangian
which are relevant below the cut-off are considered, and any sub-leading orders
of the field φ are truncated.

Flowing from one theory to the other by varying this UV-cutoff is the central
idea of renormalization. Varying the UV cut-off corresponds to the idea of
moving through S. In this interpretation, taking the derivative with respect to
the coefficients in set g = (g1, g2, . . . ) gives us basis vectors of the theory, which
we will denote by

φi(x) ≡ ∂L[φ(x)]

∂gi
, (18)

which is identical to saying that

L = giφ
i (19)
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is a decomposition of the Lagrangian.

Commonly it is assumed that we have some definite form of Lagrangian, and
work with the theory from there. We define the variations ourselves, define the
Lagrangian, and see what the theory describes. In CFT, another method is
available: using restrictions from CFT to define what forms the formulas can
have in the first place (the conformal bootstrap).

Suppose we work in a theory where the expectation values are linked by the fol-
lowing equality (assume x 6= xi so that all correlation functions are convergent):

〈
A1 · · ·AN

〉
=

∫
DφA1 · · ·AN exp (−S[φ]) (20)

with S the usual action and Ak operators in the field theory. Using the variation
δS = (2π)

−1 ∫
d2x∂µενT

µν(x) as derived in the Student Seminar lectures, this
leads to the Ward identity,

N∑
i=1

〈
A1 · · · δAi · · ·AN

〉
= (2π)−1

∫
d2x∂µεν

〈
Tµν(x)A1 · · ·AN

〉
. (21)

Note that we have used the particular variation δxµ = εµ to derive this.

Adding a term of the form of the continuity equation, (2π)
−1 ∫

d2x∂µ 〈TµνX〉
with X some operator, gives a divergence term:

N∑
i=1

〈
A1 · · · δAi · · ·AN

〉
= (2π)−1

∫
d2x∂µ

〈
ενT

µν(x)A1 · · ·AN
〉

(22)

where we have taken the liberty of integrating over the continuity equation itself
∂µ 〈TµνX〉. The integral of this zero-valued quantity is here again assumed to
be zero.

Zamolodchikov[2] then claims that the variation must therefore take the form1

δAi =

∮
∂A

dyλρλµεν(y)Tµν(y)Ai +
1

2π

∫
A
d2y∂µεν(y)TµνAi (23)

with A an arbitrary surface in R2 and ρλµ the completely antisymmetric tensor.
Allowing A to be arbitrarily small, we find the usual definition of the variation
of the operator Ai.

A logical next step is to find how an operator A specifically will vary with
x. Generally a translation will lead to the variation δA(x) = εµ∂A(x)/∂xµ,
which follows directly from the passive transformation associated to the varia-
tion δxµ = εµ. Similarly, a dilation from the origin can be represented as some
operator D̂ acting on the field A(x) at x = 0. An arbitrary dilation requires
translation from a point x = (x1, . . . ) to the origin x = 0, such that the arbitrary

dilation can be represented as δA(x) = λ
[
xµ ∂

∂xµ + D̂
]
A(x) which manifestly

1But we have not been able to derive this specific form of the variation. Our best guess
as of now is that the way the trace is defined Θ(x) ≡ −Tµ

µ, one could obtain a minus sign
somewhere, but we could not verify this.
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produces the correct result about x = 0. Here where we have chosen εµ = λxµ.
This specific choice also has consequences on the RHS of for example eq. (21)
and is the common argument to show that the trace of the stress-energy tensor
vanishes. In this case eq. (21) gives

N∑
i=1

〈
A1 · · ·

[
xµ ∂

∂xµ + D̂i

]
Ai · · ·AN

〉
= (2π)−1

∫
d2x∂µ (xν)

〈
Tµν(x)A1 · · ·AN

〉
(24)

where, after identifying ∂µxν ≡ δµν , we find the trace of T on the RHS.

Zamolodchikov’s trick is to consider a similar variation in the cut-off parameter
of the field theory, where one looks at how a general operator varies as the
RG parameters gi vary with the cut-off[2]. The idea is that we again define a
variation

δA = B̂aA = ∂aA. (25)

Identifying δS = βaφa or similarly θ(x) = 2πβa(g)φa(x) in the text above (i.e.,
pick a basis with the β functions as coefficients as outlined in the main text),
this additional “symmetry” leads to

N∑
i=1

〈
A1 · · ·

[
xµ ∂

∂xµ + D̂i − βa∂a
]
Ai · · ·AN

〉
= (2π)−1

∫
d2xβa∂a

〈
φ(x)A1 · · ·AN

〉
(26)

where the minus sign on the LHS comes from the definition of the trace θ ≡
−Tµµ . The above equation describes the running of the operator A with the
energy (implied by the beta functions) and is commonly called the Callan-
Symanzik equation. One can define additional symmetries but these turn out
to be either obsolete or composed of the symmetries described above, such that
the argument below holds identically. Also replacing D̂iA

i = ∂A
∂ log a with a the

scaling parameter, one recovers equation (8) from Zomolodchikov’s paper[1].

2 Zamolochikov’s c-theorem

The c-theorem states that in 2 dimensions there is a function c(g) that depends
on a coupling constant g which has the following properties:

1. c(t) is a monotonically decreasing function of scale t:

ċ = βi(g)∂ic(g) 6 0. (27)

At the fixed point g = g∗ we have β(g∗) = 0. βi is the function that
generates the change of the coupling constant gi.

2. At the fixed point g = g∗ we have β(g∗) = 0 which implies that ∂ic = 0.
At this fixed point we have a conformal symmetry.

3. In its fixed point c(g∗) = c, where c is the central charge encountered in
conformal field theory.
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The goal off this digest is to show that a function (called Zomolodchikov’s c
function) with these properties exists.

3 Definition of Correlators

Define the usual short-hands for the symmetric energy-momentum tensor Tµν
in complex coordinates (z, z̄) ≡ (x1 + ix2, x1 − ix2):

T = Tzz (28)

Θ = −Tz̄z (29)

T̄ = Tz̄z̄. (30)

(Note that in the paper, Zamolodchikov defined Θ without the minus sign [1]
but in his book he does use a minus sign [2].)

Also define Φi(g, x) = ∂iσ(g, a, x), where σ(g, a, x) is the action density, g the
coupling constants, a the UV cut-off scale and x the scaling parameter. The
scaling x is defined with respect to some reference action s(g, a), the correlators
of which coincide when flowing through space S along the RG flow path. Space
S is spanned by basis vectors ∂i from S(g, a, x), and it is defined as x ≡ eta
(t > 0), where t is some constant which we use to rescale.

By assumption, our couplings gi run with the energy. Therefore there is a non-
zero β-function for every gi. Thus there exists a basis in which we can expand
Θ as follows:

Θ = βi(g)Φi

Moreover we see that in a fixed point βi(g∗) = 0 and thus the trace of the stress
energy tensor vanishes. Thus in the fixed point we have a CFT. In a general
CFT, the following correlation functions of interest are with x2 = zz̄ [1]:

C(g) = 2z4 〈T (x)T (0)〉 |x2=1 (31)

Hi(g) = z2x2 〈T (x)Φi(0)〉 |x2=1 (32)

Gij(g) = x4 〈Φi(x)Φj(0)〉 |x2=1. (33)

Equivalently one can define, with t = log(zz̄) [2]:

〈T (x)T (0)〉 =
F (t)

z4
(34)

〈T (x)Θ(0)〉 =
H(t)

z3z̄
(35)

〈Θ(x)Θ(0)〉 =
G(t)

z2z̄2
(36)

Where C,F and G are invariant amplitudes under rotations.
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4 Differential equations of invariant amplitudes

Zamalodchikov defines the following c-function

c(g) = C(g) + 4βkHk − 6βiβjGij (37)

and then then takes the derivative:βi(g)∂i. And uses [1],

1

2
βk∂kC = −3βiHi + βk∂k

(
βiHi

)
. (38)

βk∂k(βiHi)− βiHi = βkβk∂k(βiβjGij)− 2βiβjGij . (39)

To be able to prove properties 1-3 of the function c(g), we first show the above
relations are true.

Starting from conservation of energy momentum tensor ∂µTµν = 0, we get

∂µ 〈TµνX〉 = gµα∂α 〈TµνX〉 = gµz∂z 〈TµνX〉+ gµz̄∂z̄ 〈TµνX〉 = 0 (40)

which leads to

gz̄z∂z 〈Tz̄νX〉+gzz̄∂z̄ 〈TzνX〉 = 0 ⇒ ∂z 〈Tz̄νX〉+∂z̄ 〈TzνX〉 = 0. (41)

4.1 Equation for Ċ

In eq. (40), X is some function that does not depend on z, z̄ we insert such that
the derivative gives no contribution. Because the metric is off-diagonal only gz̄z

appears here. Picking X = Tzz(0) = T (0) and ν = z, we derive the differential
equation

∂z < Tz̄zT (0) > +∂z̄ < TzzT (0) > = ∂z

[
−H(t)

z3z̄

]
+ ∂z̄

[
F (t)

z4

]
(42)

=
3H(t)

z4z̄
− Ḣ(t)

z3z̄

∂t

∂z
+
Ḟ (t)

z4

∂t

∂z̄
(43)

=
1

z4z̄

[
Ḟ + 3H − Ḣ

]
= 0 (44)

from which we conclude Ḟ = −3H + Ḣ. In eq. (42), because of commutativ-
ity we can swap T (0) and Tz̄z. Further, we can pick our coordinate system
appropriately so that we can swap the arguments of T and Tz̄z.

Expanding the derivative d/dt as βk∂k, and writing H(t) = βiHi and plugging
this into the differential equation, we find the first RG differential equation,

βk∂kF =
1

2
βk∂kC = −3βiHi + βk∂k

(
βiHi

)
.
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4.2 Equation for Ḣ

Again starting from our conservation equation with this time X = Tzz̄(0) =
Θ(0), but again ν = z, the corresponding equation will be:

∂z 〈Tz̄zTzz̄(0)〉+ ∂z̄ 〈TzzTzz̄(0)〉 = 0 (45)

∂z

[
G(t)

z2z̄2

]
− ∂z̄

[
H(t)

z3z̄

]
= 0 (46)[

−2
G(t)

z3z̄2
+
Ġ(t)

z2z̄2

dt

dz

]
−
[
H(t)

z3z̄2

]
+

[
Ḣ(t)

z3z̄

dt

dz̄

]
= 0 (47)

z−3z̄−2[−2G+ Ġ+H − Ḣ] = 0 (48)

Ḣ −H = Ġ− 2G. (49)

Plugging in d
dt = βk∂k, H = βiHi and G = βiβjGij , we get

βk∂k(βiHi)− βiHi = βkβk∂k(βiβjGij)− 2βiβjGij (50)

which confirms eq. (39).

5 Assertion 1

Starting from the defintion of our c-function eq. (37)

c(g) = C(g) + 4βkHk − 6βiβjGij (51)

Where we use:

βi∂iC(g) = −6βiHi + 2βk∂k(βiHi) (52)

βjβk∂kGij + βj(∂iβ
k)Gjk + βj(∂jβ

k)Gik = (53)

βk∂kHi + ∂iβ
kHk −Hi + 2βkGik (54)

which leads to

βk∂kc(g) = [βk∂kC(g) + βk∂k(βiHi)]− 6βk∂k(βiβjGij) (55)

= [−6βiHi + 6βk∂k(βiHi)]− 6βk∂k(βiβjGij). (56)

Treating the last term with care we obtain

βk∂k(βiβjGij) = (57)

βk(∂kβ
i)βjGij + βkβk(∂kβ

j)Gij + βkβiβj∂kGij (58)

βj(∂jβ
k)βiGki + βiβj(∂iβ

k)Gjk + βkβiβj∂kGij . (59)

The previous equation contains only dummy indices, so permuting the first and
second line after the equals sign as respectively.

[j → i; i→ k; k → j]

[j → k; k → i; i→ j]
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gives, using (21),

βi[βj(∂jβ
k)Gki + βj(∂iβ

k)Gjk + βkβj∂kGij ] = (60)

βi[βk∂kHi + ∂iβ
kHk −Hi + 2βkGik] = (61)

βiβk∂kHi + βi∂iβ
kHk − βiHi + 2βiβkGik = (62)

βiβk∂kHi + βk∂kβ
iHi − βiHi + 2βiβkGik = (63)

βk(βiHi)− βiHi + 2βiβkGik (64)

Plugging this into (24) and using that Gik is the metric in the last step:

βi∂ic(g) = (65)

[−6βiHi + 6βk∂k(βiHi)]− 6βk∂k(βiβjGij) = (66)

[−6βiHi + 6βk∂k(βiHi)]− 6[βk(βiHi)− βiHi + 2βiβkGik] = (67)

−12βiβkGik (68)

Where Gik can be thought of as the norm of the state and thus must be positive
definite, because of unitarity (Zomolodchikov, p.288). So we can go to a basis
where this matrix is diagonal such that we get:

−12βiβkGik = −12[β2
1G11 + β2

2G22 + ....] (69)

(70)

6 Assertion 2

Starting from:

βi∂ic(g) = −12βiβkGik (71)

→ βi[∂ic(g) + 12βkGik] = 0 (72)

→ ∂kc(g) = −12βk (73)

where Gik is some positive definite matrix, the metric in parameter space. So
we see that if βk(g) = 0, this implies that ∂ic(g) = 0, thus proving assertion 2.

7 Assertion 3

From the definition of c(g) evaluated at g = g∗, where βi(g∗) = 0:

c(g) = [C(g) + 4βk(g)Hk − 6βi(g)βj(g)Gij ]|g=g∗ (74)

c(g∗) = C(g∗) (75)

c(g∗) = 2z4[< T (z)T (0) > |g=g∗ ] = (76)

2z4

[
c/2

(z − ω)4
+

2T (ω)

(z − ω)2
− ∂ωT (ω)

z − ω

]
|ω=0 (77)

c(g∗) = c+ z2T (0)− ∂ωT (0)z3 (78)

c(g∗) = 2z4[
c

2
z−4] = c (79)
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Where in the last step we used the well known OPE for the energy momentum
tensor. And took the limit z → 0.

8 Conclusion

So we see that the value of c decreases when t increases. Therefore if we have
two fixed point g(−∞) = g∗1 and g(+∞) = g∗2 which are joined by a trajectory
g(t) in t-space. Since t has unit of inverse energy squared we conclude that if
t gets really large the energy scale is small and when t gets small the energy
scale gets large. Then we have the following values for c: c(g∗1) = c1 = cUV
and c(g∗2) = c2 = cIR. Where cIR < cUV because c decreases when t increases.
Since c represents the number of degrees of freedom, we conclude that at high
energies there are more degrees of freedom than at low energies.
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9 Applications of the c-theorem

An application of the c-theorem is to calculate how the central charge changes
between 2 fixed points. Starting from eq. (68) and using βi∂i = d/dt:

βi∂ic = 12βiβkGik (80)

dc

dt
= −12G(t) (81)

−
∫

dc = 12

∫
G(t) dt = 12

∫
〈Θ(x)Θ(0)〉 (zz̄)2 d(ln(zz̄)) = (82)

12

∫
〈Θ(x)Θ(0)〉 r4 d(ln(r2)) = 24

∫
〈Θ(x)Θ(0)〉 r3 dr (83)

−
∫ c(∞)

c(0)

dc = c(0)− c(∞) = c1 − c2 = ∆c = (84)

24

∫ ∞
0

〈Θ(x)Θ(0)〉 r3 dr (85)

Where in eq. (82) we have used eq. (36). And used that zz̄ = r2 in and we
integrate r from zero (the UV fixed point) to infinity (the IR fixed point).
Where after a different normalization one obtains [4]

∆c =
3

2

∫ ∞
0

〈Θ(x)Θ(0)〉 r3 dr (86)

9.1 Application to the Ising model

The purpose of this section is to indicate an application of the c-theorem. To
increase readability, we do not rederive results. These can be find in [4]. So one
can start with the Ising model action,

S∗ =

∫
ψ∂z̄ψ + ψ̄ ∂zψ̄ d2x, (87)

and perturb it with a mass term−imψ̄ψ. From this once can calculate 〈Θ(x)Θ(0)〉,
which leads to

〈Θ(x)Θ(0)〉 =

(
m2

2π

)2 [
K2

1 (mr)−K2
0 (mr)

]
(88)

where K0, K1 are Bessel functions. Plugging this back into eq. (86) we find
together with c1 = 1/2

∆c = 1/2 ⇒ c2 = 0 (89)

which is the central charge of a purely massive field theory in 2 dimensions
[4]. We thus see that this mass perturbation generates an RG flow to a theory
which is purely massive theory and therefore have checked explicitly that c = 0
for a massive theory [4]. An application of the c-theorem is thus to explicitly
calculate the values of c for another theory.
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10 Cardy’s a-theorem

We would like to see if there is a c-theorem in 4 dimensions. We can first
try Zamolochikov’s approach; define correlation functions as eq. (31) -eq. (36)
which are proportional to the correlation function of the stress energy tensor
with itself. And from these definitions try to define a c-function of which the
derivative is proportional to : < Θ(x)Θ(0) > where Θ = Tµµ , such that all
wanted properties listed in section 2 are satisfied.

10.1 Zamolodchikov’s approach

The first step is to define a correlation function in d dimensions, which is in-
variant under parity transformations and which has conformal weight 2d, where
d is the number of dimensions. Invariance under parity tells us that we can
only have an even number of terms proportional to rλ, with A(r) some parity
invariant function

Fµ1µ2...µn = A rµ1
rµ2

....rµn

rµk → −rµk
Fµ1µ2...µn → (−1)n Fµ1µ2...µn

We see that n must be even.The second constraint tells us the norm of every
term appearing should be proportional to r−2d and thus that for every vector
rλ we add we should also divide by |r| to have the correct conformal weight of
2d. Moreover the correlator needs to be symmetric in its first two and last two
indices, since the energy momentum tensor is symmetric in its indices. This
leads to the following two point function:

< TµνTλρ >= (A/r2d+4)rµrνrλrρ

+(B/r2d+2)(rµrνδλρ + rλrρδµν)

+(C/r2d+2)(rµrλδνρ + rνrλδµρ + rµrρδνλ + rνrρδµλ)

+(D/r2d)δµνδλρ + (E/r2d)(δµλδνρ + δνλδµρ) (90)

where A,B,C,D and E are invariant amplitudes dependent on position. We
can define our c-function to be

c = − 4

d− 1
[A+

1

2
(d2 + d+ 2)B + (d+ 3)C +

1

2
d(d+ 1)D + (d+ 1)E],

(91)

such that:

ċ = − 4

d+ 1
〈ΘΘ〉 − 2(d− 2)B. (92)

We would like to stress that the derivation of equation (63) is not obvious. One
must start from the conservation equation: ∂µTµν = 0 and the decomposition:

Θ = β(g)φ. To get relations between the derivatives of these amplitudes Ȧ, Ḃ, ...,
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just like we have shown is possible in the d = 2 case: see equations eq. (44) and
eq. (49).

The main point is that Zamolodchikov his approach of proving the existence of
a c-function by using correlators and invariant amplitudes, only works in d = 2
due to term proportional to (d − 2)B in eq. (92). Because in d 6= 2. We have
in a fixed point (Θ = 0): ċ = 2(d − 2)B, thus c is not stationary in a fixed
point. Which is the second property we want our c-function to have (section
2). So we come to the conclusion that to show the existence of a c-function in
4 dimensions we need another approach.

11 Cardy’s approach: A c-function in d dimen-
sions

We know from the Weyl anomaly that when the theory is place on a curved
background the expectation value of the trace of the stress energy momentum
tensor is (up to normalization of (2π)−1)[3]

〈Θ〉 = −cR/12.

Now define the following c-function in d = 2:

c = − 3

2π

∫
S2

〈Θ〉√gd2x.

On the 2-sphere with radius ρ, we have R = 2/ρ2, such that we get

〈Θ〉 = − c

12

2

ρ2
= − c

6ρ2
(93)

→

c = − 3

2π

∫
S2

− c

6ρ2

√
gd2x (94)

c = +
c

4π

∫
1

ρ2
ρ2 sin θ dθdφ (95)

c = +
c

4π
4π (96)

c = c. (97)

We see that this definition of the c-function appears to be correct when the
theory is placed on the 2-sphere. This idea can be generalized to d dimensions
where d is an even number. The definition below of the c-function vanishes
when d is odd:

c = (−1)d/2ad

∫
Sd
〈Θ〉√gd2x (98)

In conclusion, we have found a way of defining c that directly satisfies property
3 in section 2 [3].
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11.1 Perturbing the action

As we saw before in section 9 we can perturb the action with an operator that
generates an RG flow. In this case we can consider perturbing the action by
some weakly relevant operator φ0

S = S∗ − λ0

∫
φ0
√
gddx (99)

Where we want to renormalize this field: φ(x) = Z−1/2φ0. Where φ0 has
scaling dimension d − y with 0 < y � 1. Zamolodchikov showed that the
following relation holds

Θ = S(d)β(g)φ(x) = S(d)β(g)Z−1/2φ0(x) (100)

where S(d) = 2πd/2(Γ(d/2))−1 which is just the inverse of the angular integral of
the d-sphere:

∫
Ωd. So in order to calculate c we need to know: < φ0 >,Z, β(g).

We know that

β(g) = −yg − 1

2
S(d)bg2 +O(g3) (101)

Z = 1 + 2S(d)bg/y +O(g2) (102)

〈φ0〉 = λ0

∫
〈φ0(0)φ0(r)〉ddr

+
1

2
λ2

0

∫
〈φ0(0)φ0(r1)φ0(r2)〉ddr1ddr2 (103)

= λ0(2ρ)−d+2yI2 +
1

2
λ2

0(2ρ)−d+3yI3 (104)

where I2, I3 are the integrals stated below:

I2 = πd/2
Γ(−d/2 + y)

Γ(y)
(105)

I3 = πd
Γ(y/2)3Γ(−d/2 + 3y/2)

Γ(y)3Γ(d/2)
(106)

The 2- and 3-point functions in equation eq. (103) are defined as follows: 〈φ0(0)φ0(r)〉 =
r−2h and 〈φ0(0)φ0(r1)φ0(r2)〉 = rh1 r

h
2 |r1−r2|h [5], where h = d−y [3] the scal-

ing dimension of the bare fields φ0. Plugging in these definitions into eq. (103)
should give (13) and (14) from Cardy his paper [3]. However we can not fig-
ure out where the factor of : 1

(1+r2i )y
comes from. Plugging in everything and

integrating over the d-sphere gives

c(g) ∝ −1

2
yg2 − 1

6
S(d)bg3 = (107)

−1

2
g2[y +

1

3
S(d)bg] (108)

ċ(g) ∝ −yg − 1/2S(d)bg2 = β(g) (109)

So we see that ċ(g) is stationary when β(g∗) = 0., directly satisfying property 2
from section 2. However we see that ċ is proportional to the β function. This β
function is not a monotonically decreasing function so property 1 is not satisfied
and we can not prove the existence of a c-function in four dimensions.
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12 The possible existence of an a-Theorem

In the previous section we saw that it was not possible to have a c-theorem
in d dimensions, since the monotonic decreasing property was not proven. We
would like to know if there can be an c-theorem in 4 dimensions (henceforth
called a-theorem) based on the knowledge we have by looking at a theory where
we know the degrees of freedom (the values of c(g)) in the IR and in the UV.
We want to do this for QCD. We know that in the UV the coupling g goes to
zero. The coupling g becomes infinitely strong in the IR. We know the degrees
of freedom (the value of the c-function in these limits) to be as follows, where
Nf are the amount of massless Dirac fermions and Nc are the gauge bosons of
the group SU(Nc)[3]

lim
g→0

c(g) = aUV = 11NcNf + 62(N2
c − 1) (110)

lim
g→∞

c(g) = aIR = N2
f − 1. (111)

The a-theorem, would be violated if

aUV < aIR (112)

11NcNf + 62(N2
c − 1) < N2

f − 1 (113)

N2
f − 11NcNf − 62(N2

c − 1)− 1 > 0 (114)

Changing > → = and solving for Nf

N±f =
11

2
Nc ±

1

2

√
121N2

c + 4[62(N2
c − 1) + 1]

(115)

N±f =
11

2
Nc ±

√ (
11Nc

2

)2

+ 62(N2
c − 1) + 1

(116)

Sketching aUV and aIR fig. 1 as a function of Nf and only looking only at the
positive solution we conclude that the a - theorem is not true if

N+
f >

11

2
Nc +

√ (
11Nc

2

)2

+ 62(N2
c − 1) + 1 (117)

However aUV is valid up to Nf = 11Nc
2 so we (fig. 1) that aUV is always bigger

than aIR so the existence of an a-function could be proven.

13 Current status and future perspectives

So Cardy could not prove the a -theorem, but he conjectured the existence of
it [3]. In a paper by Osborn in 1989 [6], Osborn showed that an a-theorem
exists when using pertubation theory on a curved space. In a paper by Ko-
margodski & Schwimmer [7] it was shown that the a-theorem is also valid in a
non-perturbative approach.

18



Figure 1: Sketch of the degrees of freedom (y-axis), in the IR and in the UV
of QCD, as a function of the number of massless Dirac fermions Nf ,. Plot 1)
displays the degrees of freedom (d.o.f.) before the cutoff is imposed. Plot 2)
displays the d.o.f. after the cutoff is imposed. The cutoff is at Nf = 11Nc

2 ,
beyond this value the theory becomes asymptotically free (thus we are in the
UV). Below this value the theory is strongly bound and we are in the IR.
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