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1 Introduction

In 1944 Onsager solved the 2D Ising model on the lattice exactly, for any
temperature. This has so far not been done for the 3D model, although it
has been attempted by many. Attempts to solve the 3D Ising model at the
critical point, T = Tc, where it shows a second order phase transition (the
magnetic susceptibility changes discontinuously) have been more succesful.
Second order phase transitions are important in liquid-vapor transitions and
transitions in binary fluids and uniaxial magnets. The second order phase
transition of the Ising model is in the same universality class as those phase
transitions [19], so solving the 3D Ising model at the critical point will hope-
fully give more understanding of second order phase transitions in general.
First we introduce the conformal bootstrap and discuss the solution for the
2D Ising model. Then we will review the paper [19] by El-Showk et al. who
have tried to solve the 3D Ising model at the critical point in the continuum
limit using conformal bootstrapping techniques.

The region close to the critical point has the advantage that the physics is
universal and does not depend on the action that is chosen; for example an
action with specific nearest-neighbour interactions. At points far away from
T = Tc the choice of action does play a role [17]. Going to the continuum
limit means that the lattice spacing goes to zero or equivalently going to
large length scales such that the lattice spacing is very small compared to
the length scale. This means going to the low energy (IR) limit, where the
effects coming from the lattice disappear. At the critical point the correlation
length ξ(T ) → ∞ for T → Tc. We see that in this limit, the two-point
function of the spin operator changes form [17]:

〈σ(0)σ(r)〉 ∼ e−r/ξ(T ) T→Tc,ξ→∞→ 〈σ(0)σ(r)〉 1

|r|2∆
(T = Tc)

The exponent which had a length scale in it vanishes and the model becomes
invariant under scale transformations. The two-point function has a pow-
erlaw form at the critical point. In 2D, Zlamodichov and Polchinski have
shown [11, 21] that scale invariance also implies conformal invariance, so the
2D Ising model is a conformal theory at the critical point. In 3D this is not
proven yet, but it looks like this is the case and conformal invariance seems
to be present at critical points [19]. We will assume, as they did in [19], that
at the critical point, the 3D Ising model is also conformally invariant.
With this assumption, El-Showk et al. have tried to find bounds on the
operator dimensions of the 3D Ising model, using conformal bootstrap tech-
niques [19]. In this article we will rederive their outcomes and explain the
results they found and their impact. We will assume a basic level of knowl-
edge of Conformal Field Theory (CFT). An overview is given in appendix A.

In section 2 we will explain the conformal bootstrap and the philosophy
behind it. In section 3 we will discuss the success of solving the 2D Ising
model at the critical point using the same conformal bootstrap techniques.
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In section 4 we will have a closer look at the lowest dimensional operators of
the 3D Ising model and in section 5 we will use the conformal bootstrap to
obtain bounds on the dimensions of the three lowest dimensional operators.
Sections 4 and 5 closely follow [19] and aim to rederive and explain their
results.

2 The Conformal Bootstrap Philosophy

2.1 The origin of the bootstrap

In the 1960s particle physics took a great flight and physicists tried to divide
newfound particles in fundamental building blocks and composites. Geof-
frey Chew was against such a method as “Nature is as it is because it is the
only possible consistent Nature”. He claimed he could find Nature’s laws
just from self-consistency conditions, by “pulling them up from their own
bootstraps” [20]. In particle physics this method fell into oblivion, but it
came to use in Conformal Field Theory (CFT).

We can see Quantum Field Theories (QFTs) as a renormalization group
(RG) flow between conformal points: a flow between a CFT in the UV and
the IR. Classifying the CFTs would give a framework in which all the QFTs
live. The conformal bootstrap is a way to classify CFTs.
The idea of the conformal bootstrap was first suggested in the 1970s by
Polyakov [13]. Until then the way to describe strong interactions in QFT
was to solve part of the problem (the microscopic case) with perturbation
on a local action, but this proved to be very difficult. Polyakov solved the
2D Ising model using conformal bootstrap techniques. However, it turned
out that solving CFTs using bootstraps in higher dimensions was difficult,
but progress has been made in 2008. Rattazzi and Rychkov wondered if the
mass inducing we now know comes from the Higgs boson could come from
a 4D CFT. This was the start of a lot of progress in the bootstrap region.
How does CFT correspond to other problems? The 3D Ising model becomes
conformally invariant at large distances. But this IR CFT is the same CFT
that arises from the φ4 theory or the critical point of water at its phase
diagram. The same IR CFT can arise from different microscopic systems.
This means these theories are IR equivalent at their critical points. This is
also called critical universality. This means that we can study the CFT by
doing computations in any of the microscopic theories. But another powerful
tool is using the IR-symmetries arising at the critical points. This leads to
the Conformal Bootstrap:

1. Focus on the CFT and not on one of its microscopic realizations.

2. Determine the consequences of the conformal symmetries.

3. Impose consistency conditions on the theory.

4. Use this to constrain and (if possible) solve the theory.
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2.2 The Bootstrap equations

Under the Operator Product Expansion (OPE) the primary operators of a
CFT form an algebra. The OPE allows us to express the product of two
local quantum fields in terms of well-defined local fields,

φi(x)φj(y) =
∑
O
fijOC

O
ij (x− y, ∂y)O(y), (1)

where we sum over all primaries, the COij are analytic differential operators
that are fixed by conformal invariance. The fijO are the OPE coefficients.
If we know the OPE coefficients fijO, the spins, l, and the operator dimen-
sions of the primary operators ∆O, we know the complete operator algebra
of conformal fields. These numbers comprise the “CFT data”.

Computing n-point functions seems like a hard task, but it is possible to
express n-point functions in terms of three-point functions. Conformal sym-
metry severely constrains the correlation functions of local operators. A
two-point function for scalars generally looks like,

〈O(x)O(y)〉 =
1

|x− y|2∆O
.

And three-point functions,

〈A(x)B(y)C(z)〉 =
fABC

|x− y|∆A+∆B−∆C |y − z|∆B+∆C−∆A |z − x|∆C+∆A−∆B
,

with ∆O the scaling dimension of O(x). The fABC are the three-point co-
efficients (we can identify these with the OPE coefficients from (1)). These
coefficients are normalized to be 1 for two-point functions (〈∆|∆〉 = 1).
For higher dimensions we do not have this freedom anymore. Surprisingly
we do not need explicit expressions for higher-point functions than three-
point functions. In the 1970s among others Polyakov [13] discovered a way
to express higher-point functions in terms of two-point functions. This is
called the conformal block decomposition. Using expansion (1) this gives for
a four-point function of scalar operators,

〈φ1φ2φ3φ4〉 =
∑
O
f12Of34OC

O
34C

O
12 〈O(x)O(y)〉 (2)

=
∑
O

f12Of34OG∆,l(u, v)

(x2
12)

1
2

(∆1+∆2)(x2
34)

1
2

(∆3+∆4)

(
x2

24

x2
14

) 1
2

∆12
(
x2

14

x2
13

) 1
2

∆34

(3)

or schematically (figure from [15], the fijO are here λijO),

5



Figure 1: We can place the four points on the plane in this way using
conformal invariance. This leaves two coordinates free. Source: [6].

In equation (3) u and v are the conformally invariant cross-ratios:

u =
x2

12x
2
23

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (4)

Conformal invariance ensures there are exactly two undetermined quantities.
How? Using special conformal transformations we can put one term (x4) on
infinity. We set x1 to zero using translations. Using rotations and dilatations
we fix x3 on (1, 0, 0, 0). Now three points are on one line and x2 is at position
z in the complex plane (see figure 1).
The G∆,l(u, v) are the conformal blocks. But this shows an ambiguity. In-
stead of gluing together φ1 with φ2 we could also have taken φ1 with φ4; we
could have chosen a different OPE channel (14)(23) instead of (12)(34). To
make the CFT consistent these three-channels should be the same:

This is the Bootstrap condition, also called OPE associativity (it shows the
associativity of the operator algebra) or crossing symmetry. This imposes a
constraint on the OPE coefficients of the form∑

O
f12Of34O(. . .) =

∑
O
f14Of23O(. . .). (5)

Because we can express n-point functions in terms of n−1-point functions it
is enough to have crossing symmetry on four-pointfunctions. No additional
constraints on higher point functions are needed. This is shown in Figure 2.
This constraint is necessary and sufficient to define a consistent CFT. Using
this to classify CFT’s and their properties is called the Conformal Bootstrap
approach.
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Figure 2: This shows that no additional crossing symmetries are needed by
example of a five-point function. The (12) and (15) channels should be the
same. Source: [15].

In this article we will focus on solving the Ising model with the conformal
bootstrap. The scaling dimensions in the CFT data are directly related
to the critical exponents used in this model. The scaling dimension of the
energy operator ε for example gives the exponent ν describing the correlation
length ξ when approaching the critical temperature Tc [10],

ξ ∝ |T − Tc|−ν ,

ν =
1

3−∆ε
,

and combined with the scaling dimension ∆σ of the spin operator it gives
the exponent γ related to the susceptibility χ,

χ ∝ |T − Tc|−γ ,

γ =
3− 2∆σ

3−∆ε
.

In section 4 the 3D Ising operators are discussed in greater detail.

2.3 The geometrical approach

When the crossing equation (5) was suggested Belavin et al. [1] used it to
solve the 2D Ising model. But it has proved to be difficult to solve for higher
dimensional CFTs. In 2008 Rattazzi, Rychkov, Tonni, and Vichi approached
the problem geometrically and tried to narrow the set of CFTs by deriving
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Figure 3: The sum of functions. On the right a separating plane α can be
found and these dimensions can be excluded. Source: [10].

bounds on the CFT data. This is a general approach that theoretically can
be used in all higher-dimensional CFTs, in section 5 this is done for the 3D
Ising model CFT.
If we compute the four-point function for four identical operators, for exam-
ple the spin operator, we get conformal blocks for the same operator and 3
and 5 together give a constraint of the form,∑

∆,l

f2
σσOF

∆σ
∆,l = 0. (6)

Now we can consider the F∆σ
∆,l as vectors in the functionspace of four points.

Equation (6) tells us that the vectors must sum to zero, even though they
have positive coefficients. In Figure 3 this is shown. If we can find a separat-
ing plane such that all the vectors are on one side of it, this constraint cannot
be fulfilled. Thus the set {(∆1, l1), (∆2 . . .} can be excluded as possible CFT
data. It suffices to consider a finite-dimensional subspace even though the
function space is infinite-dimensional. If not all the possible scaling dimen-
sions and spins are known, choose the unknown dimensions and spins such
that the F∆σ

∆,l lie on one side of the plane. In the Ising model for example we
search for ∆σ and ∆ε. Fix values for (∆σ,∆ε) and search for a separating
plane. If this is found, these dimensions can be excluded.

3 Solving the 2D Ising model

In 1970 Polyakov proposed conformal invariance of critical fluctuations [12].
Then the conformal bootstrap could be used to solve critical point theories,
and he did so in 1984 for the 2D Ising model. We will outline his method in
[1] to solve the 2D conformal bootstrap exactly and then comment on the
geometrical approach from 2.3.

3.1 Using the Virasoro algebra to obtain minimal models

The difference in 2D with higher dimensional CFTs is that the Virasoro
algebra can be used.
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The conformal transformations are generated by the algebra of differential
operators ln = zn+1 d

dz which satisfy the commutation relations [ln, lm] =
(n − m)ln+m. The extension of this algebra is the Virasoro algebra Lc,
defined by the commutation relations,

[Ln, Lm] = (n−m)Ln+m +
1

12
c(n3 − n)δn+m,0. (7)

These are the mode-operators of the energy-momentum tensor. The Virasoro
algebra contains a subalgebra SL(2,C) generated by L0, L1 and L−1. This
is the algebra of special conformal translations. The representationspace of
the conformal algebra is given by the Verma module Vn. Each conformal
family [φ] (primary and its descendants) corresponds to a representation.

The Virasoro algebra plays a very important role. The Bootstrap equation
(5) can be solved in a few special cases because the conformal blocks can be
computed exactly. This happens for certain dimensions ∆ associated with
the degenerate representation of the Virasoro algebra.
The Verma module V∆ is irreducible unless it contains a nullvector (also
called the highest weight state |χ〉 satisfying,

Ln |χ〉 = 0 (8)

L0 |χ〉 = (∆ +K) |χ〉 ,

with K ∈ N. To obtain the irreducible representation the nullvector |χ〉
must be put to 0. The dimensions for which we can find such a |χ〉 were
listed by Kac [9]:

∆(n,m) = ∆0 + (
1

2
α+n+

1

2
α−m)2, (9)

∆0 =
1

24
(c− 1), (10)

α± =

√
1− c±

√
25− c√

24
, (11)

where c is the central charge.

What does this imply for the CFT? With the operator-state correspondence
there exists a field with dimension ∆(n,m) + K associated to the nullvector
|χ〉. This field is at the same time a primary (because it satisfies equation
(8)) and a secondary, as it is a descendant of the field with dimension ∆(n,m).
Because it has primary properties we can also consider the tower of descen-
dants of the field φ∆(n,m)+K

. These are all zero with eq. (8) and removing
these fields from the conformal family [φ∆(n,m)

] gives the irreducible con-
formal family (the degenerate conformal family). This contains less fields
than it normally would, it is truncated. A useful property of these confor-
mal families is that its correlation functions satisfy linear partial differential
equations [1, 7]. This imposes constraints on the operator algebra and en-
ables us to find the conformal blocks. CFTs containing only degenerate
conformal families are called minimal models. They are characterised by a
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Figure 4: Diagram of dimensions. The dots represent the allowed dimen-
sions, listed by n,m. Source: [7].

finite amount of representations. More details can be found in [7].

Let us go back to the Kac formula (9) and see what it tells us about the
allowed dimensions. Three sectors can be identified. For c ≥ 25 the α±
are complex thus the second term becomes negative. For n,m sufficiently
large ∆(n,m) becomes negative and does not satisfy the unitarity bound.
The second sector comprises 1 ≤ c < 25. Then only one term of α± is
complex and the scaling dimension becomes complex. So to get physical
dimensions we narrow our attention to the sector 0 < c ≤ 1. We can present
the allowed dimensions in a “diagram of dimensions” (see Figure 4). The
baseline is given by ∆0 and the allowed dimensions can be represented by
dots in a plane. The angle between ∆0 and these dots is given by the ratio

tan(θ) = −α−
α+

=
√

25−c−
√

1−c√
25−c+

√
1−c = p

q .

In [7, 1] fusion rules are worked out. These rules show which conformal
families occur in the OPE of two fields. According to fusion rules we not
only get truncation from below as we described earlier, but also from above.
These rules imply that the degenerate fields with n ≥ p or m ≥ q drop out.
After truncation from fusion rules the theory only contains the families asso-
ciated with the dots inside the rectangle enclosed by p and q. This severely
constrains the conformal families in the theory and the allowed dimensions.
A minimal model is characterised by M(q, p). From the rectangle and inte-
ger spacing of the operators it is clear that there are 1

2(p− 1)(q− 1) allowed
dimensions. The 2D Ising model coincides with the minimal modelM(4, 3).
This minimal model also describes the free theory of a Majorana fermion.
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Figure 5: Diagram of dimensions for the minimal modelM(4, 3) with central
charge c = 1

2 . Only the allowed 6 dimensions inside the rectangle are shown.
Source: [1].

3.2 The minimal model M(4, 3)

We start from the central charge c = 1
2 . This gives the minimal model

M(4, 3). Computing (9) for the case at hand yields the dimensions:

∆(1,1) = ∆(2,3) = 0

∆(2,2) = ∆(1,2) =
1

16
, (12)

∆(2,1) = ∆(1,3) =
1

2
, (13)

shown in Figure 5. These dimensions correspond to three degenerate fields,
which we can immediately link with the operator-field correspondence to the
known identity operator, spin operator and energy operator:

ψ(1,1) = ψ(2,3) = I,
ψ(2,2) = ψ(1,2) = σ,

ψ(2,1) = ψ(1,3) = ε.

This theory has the following fusion rules:

σ × σ = I + ε,

ε× σ = σ,

ε× ε = I,

leaving out the trivial fusion rules with the identity. An appropriate set of
fields to describe the closed operator algebra is now {I, σ, ε,+descendants}.
To get the full dimensions of the operators σ and ε we have to add the
dimensions in (12) and (13) to get the well-known dimensions ∆σ = 1

8 and
∆ε = 1.
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3.3 Solving the 2D Ising model using the geometrical ap-
proach

In the last subsection we used knowledge of minimal models in CFT to solve
the 2D Ising CFT exactly. But the general geometrical approach described
in section 2.3 can also be used to derive bounds on the operator dimensions of
the 2D Ising CFT, this is done in [14]. Instead of working with the Virasoro
algebra we now need to define primaries in Sl(2,C). This is achieved by
decomposing the Verma module into irreducible Sl(2,C) representations. An
advantage in 2D above 3D is that the conformal blocks are known exactly.
These are given by,

g∆,l(u, v) =
(−)l

2l
[f∆+l(z)f∆−l(z̄) + (z ↔ z̄] . (14)

The bounds on the operator dimensions from solving equations (6) give
a kink very close to (∆σ = 1

8 ,∆ε = 1). This suggests it is a reasonable
method to solve conformal bootstraps and determine the critical dimensions
and operator spectrum for the Ising model. This is good news for higher
dimensional Ising models which are not exactly solvable.

4 Operators and their dimensions in the 3D Ising
model

The 3D Ising model is completely known at the critical point in the contin-
uum limit if we know all the dimensions of all the operators and their OPE
coefficients. So we are looking for the spectrum of operator dimensions. In
a CFT, we can divide the operators in two classes: the primaries and the
descendants (see also appendix A). The 3D Ising model has in principle an
infinite amount of primary operators and descendants. However, in the lit-
erature only seven of the primary operators have been studied. Those seven
can be found in Table 1 in [19]. We repeat the table here for convenience.

Operators Spin l Z2 ∆ Exponent

σ 0 - 0.5182(3) ∆ = 1/2 + η/2
σ′ 0 - ≥ 4.5 ∆ = 3 + ωA
ε 0 + 1.413(1) ∆ = 3− 1/ν
ε′ 0 + 3.84(4) ∆ = 3 + ω
ε′′ 0 + 4.67(11) ∆ = 3 + ω2

Tµν 2 + 3 n/a
Cµνκλ 4 + 5.0208(12) ∆ = 3 + ωNR

Table 1: Notable low-lying operators of the 3D Ising model at criticality.
Source: [19]

Their dimensions as given in Table 1 have been calculated using various
techniques, such as Monte Carlo simulations and the ε-expansion. The last
one is the most commonly used one and we will review it here shortly. Then
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Figure 6: Renormalization Group flow between two fixed points, which are
often found to be conformally invariant. Source: [17].

we will have a look at each of the seven operators individually, to see what
role they play. Most of the information in this section comes from a lecture
given by Slava Rychkov at CERN in 2013. Video recordings of this lecture
can be found online. [17]

4.1 Bootstrapping vs ε-expansion

The ε-expansion is based on the renormalization group (RG) method, where
you start with a free scalar theory that you can perturb by the relevant, Z2

preserving operators m2φ2 + λφ4. Relevant in a three-dimensional theory
means that the coupling has a positive mass dimension and the operator
is relevant at low energies. Note that in D = 3, [φ] = 1

2 . From the free
scalar theory with a relevant perturbation at the UV we flow to the critical
point at the IR (see Figure 6). Along the way, some operators might pick
up an anomalous dimension due to quantum loop effects. The problem of
this method is that in three dimensions, the region close to the critical point
is strongly coupled, so there perturbation theory breaks down and we don’t
know how to calculate the flow and the anomalous dimensions. The solution
to this is to perform a trick. We go to D = 4− ε, where this region becomes
weakly coupled. The interaction term λφ4 is marginal in D = 4, meaning
that [λ] = 0, and we can do normal perturbation theory again. So we com-
pute all the operator dimensions and OPE coefficients in 4 − ε dimensions
and express it in a power series in ε. Then we set ε→ 1 to get back to D = 3.

This seems like a valid method. However, the power series in ε is divergent
and the problems already start at the second/third term in the expansion.
And with ε of O(1), perturbation theory cannot be trusted here as well.
There are some techniques such as Borel resummation, that can partly solve
this problem, but it is still a bit awkward and the calculation of higher
dimensional operators becomes imprecise quite quickly. Another thing is
that by using this method, or any RG method, we completely throw away
the fact that the theory (possibly) has conformal invariance at the critical
point. Along the RG flow, conformal invariance is only present at the fixed
points, but not along the flow. It feels a bit unsatisfactory to just throw out
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something as universal as conformal invariance. Or, as Rychkov put it [17]:
“If we are trying to describe something as beautiful and universal, why do we
have to do it by trying to arrive at this universal object by flowing through
some mud?”. We might want to look for a method that actually exploits the
features given by conformal invariance. The conformal bootstrap is such a
method.

4.2 Ising operators

El-Showk et al. [19] tried to find the operator dimensions using the confor-
mal bootstrap. The values for the dimensions given in Table 1 were used as
guidance to see if the bootstrap will reproduce the results found by using
other techniques. Let us have a closer look at those operators first. The 3D
Ising model on the lattice has global Z2 symmetry: the Ising spin flip. This
means that all the operators are either odd or even under this symmetry. All
the operators considered here are primaries and do not contain derivatives.

The Z2 odd operators in the table are σ and σ′. In terms of renormalization
group methods, they correspond to φ and φ3 respectively in the UV theory.
While flowing down to the IR, the fields acquire an anomalous dimension and
become σ and σ′. σ is the spin operator in the Ising model. The anomalous
dimension it acquires is small, of order O(ε2) in the ε-expansion (the term
linear in ε vanishes). This can also be seen when considering the dimension
of σ. It is slightly above 1

2 , which is the dimension of φ in the 3D free theory.
For σ the calculated dimension is accurate, but for σ′ this is not the case. σ′

is an irrelevant operator in D = 3 (∆σ′ > 3) and the ε-expansion becomes
divergent for ε→ 1 already after the first few terms.

Let us investigate the Z2 even operators. The first one is ε, which is the prod-
uct of two spins next to each other (σiσj). It is interpreted as the energy
density field. It is the lowest dimensional and only relevant Z2 even scalar
field. In the UV free theory it corresponds to φ2. Just as the σ operator,
also φ2, which has dimension ∆φ2 = 1, will acquire an anomalous dimen-
sion when flowing down to the IR and result in the operator ε. However, the
anomalous dimension is not small. As can be seen in Table 1, the anomalous
dimension of ε is ω ≈ 0.4. This means that the RG flow is strongly coupled
and perturbation theory will break down quickly.

ε′ is already irrelevant in D = 3 since ∆ε′ > 3. We can link ε′ to φ4 in
the UV free theory. φ4 is a relevant operator in the free theory, but it will
acquire an anomalous dimension which is so large that the operator ε′ is not
relevant anymore. ε′ describes the correction to scaling. A long distance
correlation function is almost given by the dimension that the conformal
field theory predicts, but not quite. It is disturbed by irrelevant operators
that get mixed into the Lagrangian, which is a result from lattice effects.
This admixture is small, but present. Of those irrelevant operators, ε′ has
the lowest dimension and will thus give the largest correction.
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The dimension of ε′ is known poorly, because the perturbative series in ε
become more and more divergent and we cannot trust it for ε → 1. There-
fore, the estimated dimension of ε′ is even less accurate, let alone the infinite
amount of other operators that are present in the theory. That is why only
seven operators are being studied at the moment. However, as we present
in this paper, these problems do not arise when working with the conformal
bootstrap technique. This is because when using the bootstrap, we are not
relying on perturbative techniques in a region where perturbation theory
breaks down, as is the case for ε→ 1.

Tµν is the stress-energy tensor. It does not have an anomalous dimension.
It reflects the fact that the Ising model at the critical point is a local the-
ory. Normally, Tµν puts the theory in a curved background if added to the
Lagrangian. For the 3D Ising model this would be difficult to realize in a
lab. We can think of it as giving an anisotropy to the spins, for example
Jx > Jy = Jz, which means that spin flips in the x direction cost more en-
ergy than spin flips in the y or z direction. This will change the correlation
functions in the same way as adding a component of the stress energy tensor
to the Lagrangian would. In both cases the theory is no longer isotropic and
the presence of a component of Tµν will break rotational invariance.

Cµνρσ is a spin-4 operator. It has a very small anomalous dimension, unlike
the stress energy tensor. In the free theory Cµνρσ is conserved, but this is
not the case anymore in the Ising point. Like σ, the anomalous dimension as
calculated with the ε-expansion is second order in ε. It describes the effect of
rotational symmetry breaking. A cubic lattice, on which the Ising model is
defined, is not rotationally invariant. However, in the IR, rotational invari-
ance emerges. This is because going to the IR (low energies) is comparable
to going to very large length scales. If the length scales are very large, the
lattice spacing is relatively small and negligible and you end up in the con-
tinuum limit. Lattice effects disappear and rotational invariance emerges.
Because we are transferring from no rotational invariance on the cubic lattice
in the UV to emergent rotational invariance in the IR, an operator that can
break the rotational invariance is needed, otherwise this change cannot take
place. The operator that can do this with the lowest dimension is Cµνρσ.
Since Cµνρσ is an irrelevant operator it will vanish in the IR and rotational
invariance emerges there, because there is no operator left that can break it
(all the other operators have dimensions higher than Cµνρσ and will vanish
even quicker).

We see that all the operators have nonnegative anomalous dimensions. This
is related to reflection positivity or unitarity, which is explained in appendix
A.
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5 Solving the 3D Ising model

In this section we will consider a 3D CFT. We will use a conformal bootstrap
to derive a bound on the operator spectrum. To do so we will first introduce
the bootstrap condition for the four-point function of the Ising spin operator
〈σσσσ〉. Then we will sketch the method that is used to find the bound on
the spectrum. To do so we will define a function Λ and let it work on the
bootstrap crossing equation. As such it appears that certain dimensions of
operators do not obey the condition and therefore can not be included in the
spectrum. We show and interpret the results of [19] who used this method.

5.1 The conformal bootstrap for 〈σσσσ〉

To examine a 3D CFT, as a first step we will focus on constraints coming
from the four-point function of the Ising spin operator 〈σσσσ〉 that lives in
this CFT. The conformal block expansion of this four-point function reads

g(u, v) =
∑

p∆,lG∆,l(u, v) (15)

where p∆,l = f2
∆,l ≥ 0 follows from (3) and where the sum runs over all

operators that are present in the σσ OPE. This OPE consists of infinitely
many operators including the ones listed in Table 1. However, due to Bose
symmetry only even spin operators can appear in the OPE. After all, the
total spin on the left hand side has to equal that on the right hand side.
Contracting two fermionic operators therefore leads to an odd integer spin
operator, i.e. a bosonic operator with odd spin. Considering a four point
function of four fermionic operators then results in the sum of two odd in-
tegers which is always even.
Furthermore, since we’re considering a correlation function of four equal op-
erators the four point function must be invariant under the exchange 1←→ 3.
In the configuration where the four operators are located on the corners of a
square σ(x2) is as close to σ(x1) as σ(x4) is. Note that we can consider this
configuration and still make statements about the general CFT since a CFT
does not see length scales such that any configuration is equivalent to this
one. As was already explained in section 2.2, in practice the configuration
shows that the (12)(34) and (14)(23) channels involve the same OPE coef-
ficients. Therefore, the conformal bootstrap equation takes a rather simple
form. Using the expression for the cross-ratios, (4), we see it reduces to

v∆σg(u, v) = u∆σg(v, u). (16)

Now substituting the conformal block decomposition we get,

u∆σ − v∆σ =
∑′

pσ,l[v
∆σG(u, v)− u∆σG(v, u)], (17)

where the left-hand side is the contribution of the unit operator and the sum
on the right-hand side runs over all other operators. In [14] this equation has
been shown to be a fruitful starting point to extract dynamical information
about 2D and 4D CFTs. In the same manner it will be our starting point
to examine dynamical information about a 3D CFT.
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5.2 Method of confining the operator dimension spectrum

To actually confine the spectrum we define F∆σ
∆,l (u, v) ≡ v∆σG∆,l(u, v) −

u∆σG∆,l(v, u) and rewrite the crossing equation (17),

0 = F∆σ
0,0 (u, v) +

∑′
pσ,lF

∆σ
∆,l (u, v). (18)

This is the constraint that is used to confine the spectrum, because only if
the right hand side reduces to zero it is possible to describe the 3D CFT in
which the four point function 〈σσσσ〉 appears. To rule out some operator
dimensions it suffices to find a linear functional Λ acting on functions of
(u, v) such that,

• Λ(F∆σ
0,0 (u, v)) = 1, which simply is a normalization condition

• Λ(F∆σ
∆,l (u, v)) ≥ 0 for all ∆, l in the spectrum

Taking into account the positivity of p∆,l, we see that those spectra for which
the above two conditions are true do not obey (18) and therefore cannot de-
scribe the 3D CFT we are considering. In practice to produce plots like the
ones in Figure 7, 8a, 8c, 8e, 9, for every coordinate in the plane it is checked
whether there exists a consistent solution given these two values of operator
dimensions of the operators under consideration. For example, if we want
to examine the relation between ∆σ and ∆ε, for each possible combination
(∆σ,∆ε) we check whether there exists a complete spectrum that does not
contradict (18). To confine the spectrum even further, we can consider each
set (∆σ,∆ε,∆ε′) and again compare with the crossing equation. Surprisingly
enough it is found that just as in 2D CFT, ∆ε is bounded by some function
of ∆σ, ∆ε ≤ f(∆σ). But before we discuss results we elaborate a bit more
on how it can be checked whether the crossing equation is obeyed or not.

Following [19] we consider Λ of the form,

Λ : F (u, v) 7→
∑

m+2n≤2nmax+1

λm,n∂
m
a ∂

n
b F (a, b)|a=1,b=0 (19)

where a, b are defined by the relations z = (a +
√
b)/2, z̄ = (a −

√
b)/2,

where λm,n are real coefficients and where the range of m,n depends on
the value nmax. Due to the fact that F∆σ

∆,l (u, v) is antisymmetric under the
exchange of u←→ v, only odd a-derivatives are non-zero. Also, given some
nmax there are (nmax + 1)(nmax + 2)/2 non-zero coefficients λm,n and the
larger you pick nmax the stronger the resulting bound will be, but it will
also be computationally more heavy. From the definition of F∆σ

∆,l (a, b) we
see that taking derivatives of it comes down to taking derivatives of confor-
mal blocks. So to be able to proceed we need expressions of conformal blocks.

For a long time conformal blocks in 3D (and 4D) were not well understood;
they were known only in terms of complicated integrals or power series ex-
pansions in u, v. However, recently progress has been made by [5, 19]. Fol-
lowing their approach in Appendix C we show how from the double power
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series expansion introduced in [3],

G∆,0(u, v) = u∆/2
∞∑

m,n=0

[(∆/2)m(∆/2)m+n]2

m!n!(∆ + 1− D
2 )m(∆)2m+n

× um(1− v)n (20)

the expressions of the conformal blocks with spin 0 and spin 1, G∆,0(z) and
G∆,1(z), can be obtained. The results are,

G∆,0(z) =

(
z2

(1− z)

)∆/2

3F2

(
∆

2
,
∆

2
,
∆

2
− α;

∆ + 1

2
,∆− α;

z2

4(z − 1)

)
(21)

G∆,1(z) =
2− z

2z

(
z2

1− z

)∆+1
2

3F2

(
∆ + 1

2
,
∆ + 1

2
,
∆ + 1

2
− α;

∆

2
+ 1,∆− α;

z2

4(z − 1)

)
.

(22)

The higher spin conformal blocks can then be calculated by the recursion
formula that is derived in Appendix B,

(l +D − 3)(2∆ + 2−D)G∆,l = (D − 2)(∆ + l − 1)G∆,l−2

+
2− z

2z
(2l +D − 4)(∆−D + 2)G∆+1,l−1

− ∆(2l +D − 4)(∆ + 2−D)(∆ + 3−D)(∆− l −D + 4)2

16(∆ + 1− D
2 )(∆− D

2 + 2)(l −∆ +D − 5)(l −∆ +D − 3)
G∆+2,l−2.

(23)

This settles the problem of expressing conformal blocks.

In practice in calculating ∂ma ∂
n
b G∆,l first ∂ma G∆,l up to m = 2nmax + 1

is determined. This can be done by using yet another recursion formula.
For ease of notation we’ll denote ∂ma ∂

n
b G∆,l by hm,n. From (21), (22) and

(23) we see that the conformal blocks contain 3F2 hypergeometric functions.
Therefore, in order to calculate hm,0 we can make use of the fact that 3F2

hypergeometric functions obey the third order differential equation,

(xD̂a1D̂a2D̂a3 − D̂0D̂b1−1D̂b2−1)3F2(a1, a2, a3; b1, b2;x) = 0, (24)

where D̂c ≡ x∂x + c. From this identity a recursion relation of third order
derivatives in terms of second and first order derivatives follows. Taking
yet another derivative of the equation yields the fourth order derivative. As
such, derivatives up to m = 2nmax + 1 can be computed.

Once hm,0 is known, hm,n in the range m+ 2n ≤ 2nmax + 1 follows from the
recursion relation that is derived in Appendix D. The result is,

2(D+2n− 3)hm,n = 2m(D + 2n− 3)

× [−hm−1,n + (m− 1)hm−2,n + (m− 1)(m− 2)hm−3,n]

− hm+2,n−1 + (D −m− 4n+ 4)hm+1,n−1

+ [2C∆,l + 2D(m+ n− 1) +m2 + 8mn− 9m+ 4n2 − 6n+ 2]hm,n−1

+m[D(m− 2n+ 1) +m2 + 12mn− 15m+ 12n2 − 30n+ 20]hm−1,n−1

+ (n− 1)[hm+2,n−2 − (D − 3m− 4n+ 4)hm+1,n−2]. (25)
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(a) (b)

Figure 7: The shaded region is the part of the (∆σ,∆ε) plane that is allowed by
the crossing equation (18). Figure (a) shows how the boundary curve starts at the
free theory point and then rises. Furthermore, the boundary shows a kink that lies
remarkably close to the known 3D Ising model operator dimensions (the tip of the
arrow). Figure (b) is the zoom of the dashed rectangle area from Figure (a). The
red rectangle is drawn using the ∆σ,∆ε error bands given in Table 1. The figures
were computed using nmax = 11. Source: [19].

One sees that for example hm,1 can simply be computed by substituting
hm,0 and like this all other hm,n can be determined as well. The problem of
confining the spectrum of operators is now reduced to a problem of linear
programming which is further explained in [19].

5.3 Results

5.3.1 Bounds on ∆ε

The spin field in the four-point function is a zero spin operator, l = 0, such
that from unitarity, (27), we expect ∆σ ≥ 0.5. If we consider ∆σ from this
lower bound up until the arbitrarily chosen upper bound, 0.5 ≤ ∆σ ≤ 0.8,
we can ask the question what is the maximal allowed ∆ε by (17)?
This question was answered by [19] using the methods explained in the
previous section and their results are shown in Figure 7. Just as [16] shows
in the 2D case ∆ε is bounded by some function. Also, again it starts at
the free theory point - which one can find by considering the action without
interactions - and then rises steadily. What is rather interesting is the fact
that also in this plot we see a kink. In the 2D case we have seen that the kink
corresponds to the Ising point. For 3D [8] has reported Ising dimensions,

∆σ = 0.5183(4), ∆ε = 1.412(1).

Comparing this with the location of the kink we see it’s remarkably close to
the Ising dimensions in 3D. More specific, the boundary of the allowed region
intersects the red rectangle that was drawn using the ∆σ and ∆ε error bands.

What can be concluded from this? In order to find values for the operator
dimensions conformal invariance was assumed. Comparing the results that
were found using conformal bootstraps with the operator dimensions that
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were found by other techniques, we see that they are not inconsistent: the
operator dimensions that were found previously are contained in the shaded
region of Figure 8a. Second, almost half of the rectangle (∆σ,∆ε) has been
ruled out so it is possible to gain information about 3D CFTs using a boot-
strap technique. Furthermore, it seems as if the Ising point lies remarkably
close on the boundary of the allowed region, if not on the boundary. How-
ever, there is no explanation yet why this should be the case.

5.3.2 Bounds on ∆ε assuming a gap between ∆ε and ∆ε′

Just as we can fix two variables and see if there exists a consistent solution
for the operator spectrum, we can consider the situation where we constrain
three dimensions and see which region is actually allowed by the bootstrap.
Operator dimensions of different operators always have a slightly different
value, but in the following we assume a certain gap between the operator
dimensions of ε and ε′. This has been proposed by [16]. In fact we consider
three different constraints: ∆ε′ ≥ 3, 3.4, 3.8. The question we now try to
answer is, assuming an extra constraint, namely ∆ε′ ≥ x, what is the region
of the (∆σ,∆ε) plane that is allowed by (17)?
The first assumption ∆ε′ ≥ 3 is chosen since we know that the 3D Ising
critical point is reached by fine-tuning just one parameter, the temperature.
Because the Ising point lies in the IR, only relevant operators determine the
CFT; the irrelevant operators are suppressed. The fact that there is only
one parameter to be fine-tuned means that there can be only one relevant
Z2 even scalar operator and that ε′, ε′′ etc. must be irrelevant. Given the
dimension of the theory that we consider the lowest value of ∆ε′ that makes
sense to describe the region around the Ising point is 3. In Figures 8a, 8b
the plot that results from imposing the constraint ∆ε′ ≥ 3 is showed. One
sees that yet a bigger part of the spectrum is excluded, but that the 3D Ising
point is maintained.
When considering the stronger bounds ∆ε′ ≥ 3.4, 3.8 for which the results
are shown in Figures 8c, 8d and Figures 8e, 8f even larger portions of the
operator dimension space gets excluded. The upper branch seems to end at
the 3D Ising point whereas the lower one terminates near the free theory.
The zoomed Figures, 8b, 8d, 8f, show that the allowed region barely inter-
sects the 3D Ising point. In fact, the more constrained ∆ε′ gets, the less the
boundary of the shaded region intersects the Ising point rectangle. This has
been examined closer by [19]. It was found that the intersection disappeared
when ∆ε′ ≥ 3.840(2). We can therefore conclude that 3 ≤ ∆ε′ ≤ 3.840(2).
This conclusion is affirmed when ∆ε is fixed to its maximal value in Fig. 7
and the maximal value of ∆ε′ is examined. Figure 9 shows the same be-
haviour as in 2D: a rapid growth around the (3D) Ising value of ∆σ. It
allows ε′ to quickly become irrelevant in this region (one can see from the
figure that [ε′] > 3 just before the Ising point which is indicated by the red
vertical line). However, around the 3D Ising ∆σ the bound is ∆ε′ . 3.84
which is consistent with what was found above.

The illuminating part of this story is the fact that the conformal bootstrap
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(c)
(d)

(e) (f)

Figure 8: The same figure as Figure 7, but imposing the extra constraint ∆ε ≥
{3, 3.4, 3.8}. Source: [19].
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Figure 9: The bound on ∆ε′ under the condition that ∆ε has been fixed to its
maximal allowed value by (18). In this plot nmax = 10. The width of the vertical
red line marking the 3D Ising value of ∆σ is about five times the error band in
Table 1. Source: [19].

technique shows how operator dimensions depend on each other. From a
renormalization group point of view this has not been seen before. When
using the ε expansion for example each operator dimension has to be com-
puted separately. The dependency of dimensions can make it a lot easier to
gain the complete spectrum and to describe the complete CFT.

5.3.3 Bounds on the gap in the spin 2 sector

The story so far considered the scalar sector of the 3D Ising model. How-
ever, it’s also interesting to examine the dimensions of operators with non-
vanishing spin. The first operator with spin that appears in the σ × σ OPE
is the energy stress tensor, Tµν , which has spin 2 (as can also be seen from
Table 1). However, as a first try not Tµν is considered but the second spin
2 operator in the OPE, T ′µν .

Figure 10 shows how ∆T ′ is bounded by the crossing symmetry constraint
(17). The bound is shown as a function of ∆σ and falls rapidly around the
3D Ising value of ∆σ which again has been denoted by the red vertical line.
In fact the bound of ∆T ′ shows opposite behaviour to that of ∆ε′ . It starts
at a plateau at ∆T ′ ∼ 5.7, then drops around the 3D Ising point to stay at
a value around ∆T ′ ∼ 3.5 as ∆σ increases. Notable is that assuming a gap
of for example ∆T ′ ≥ 4 leads to a sharp upper bound on ∆σ. One can see
from Figure 10 that if this gap would be assumed, the upper bound on the
dimension of σ would be ∆σ ≤ 0.52. Taking into account the Figures 8a, 8c,
8e very small regions in the (∆σ,∆ε) would be obtained.

Unfortunately the operator T ′µ,ν hasn’t been computed before by other tech-
niques in contrast with the other operators discussed in this paper. There-
fore we can not immediately check the results obtained by the bootstrap
technique for this operator. [19] justifies why the result that was found is
probably correct. [19] also elaborates on the restrictions resulting from the
bootstrap on the dimension of higher spin primaries such as Cµνκλ and on
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Figure 10: The allowed values for ∆T ′ given the crossing equation (17). T ′
µν is the

second spin 2 operator. To obtain these results nmax = 10 was used and the 3D
Ising vertical line is five times wider than the error band in Table 1. The region
of ∆σ close to unitarity hasn’t been shown due to numerical instabilities. Source:
[19].

the bounds on central charges.

6 Outlook

In this paper we reviewed recent progress that was made by [19] in solving
the CFT describing the 3D Ising model at critical temperature in the con-
tinuum limit using the conformal bootstrap technique. Even though it is
not well understood why conformal invariance should be a general feature
of criticality, it was assumed that the 3D Ising critical point is conformal.
However, the results that were obtained by using the bootstrap technique
are not inconsistent with the values of the 3D Ising operator dimensions that
were known before from other techniques (like ε-expansion, Monte Carlo sim-
ulations etc.). This justifies assuming conformal invariance at the 3D Ising
point. To further test if the assumption is indeed correct the three-point
function 〈σ(x)σ(y)ε(z)〉 on the lattice could be measured experimentally and
compared with the functional form that follows from conformal symmetry.
The advantage of the conformal bootstrap technique over other methods is
that it is far more accurate. In fact, up to some numerical errors that can
be made arbitrarily small it is completely rigorous. In series expansions, like
ε- or loop-expansions, for example only the first few terms are computed
and the higher ones are neglected all together, even though for example in
the ε-expansion we do not know if we can neglect higher order terms, since
ε→ 1. In lattice simulations it can be difficult to control the errors induced
by discretizing the theory. The conformal bootstrap techniques do not have
these problems.
Another advantage is the dependence of operator dimensions on each other.
Most of the bounds that were found seem to essentially be saturated by the
values realized in the 3D Ising model. This suggests a recursive approach of
determining the dimensions: first fix ε to its maximal dimension, then given
this information compute the maximal dimension of ε′, etc., just as was done
to obtain Figure 9. Note moreover that even though we have been focussing
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on the 3D case, the results are in fact applicable to all D.
It is impressive that imposing only the first and simplest bootstrap condition
- the one following from the four-point function 〈σσσσ〉 - excludes such a
large region of the space of solutions. Moreover, close to the 3D Ising point
the boundary shows a kink. It seems as if the 3D Ising point lies on this
kink on the boundary. This might have interesting consequences for obtain-
ing some analytical understanding of the 3D Ising model: firstly, the crossing
symmetry constraint is expected to allow fewer solutions on the boundary
than in the interior, perhaps even a single solution [19]. Secondly, around
the kink we have seen that the operator spectrum rapidly rearranges itself
(Figure 9, 10). It has been found that such spectrum rearrangements cor-
respond to linear degeneracies among various conformal blocks. Therefore
it is important to study this phenomenon in more detail because it brings
along the possibility of gaining some analytical understanding of the 3D Ising
model.
It would also be interesting to examine bootstrap conditions coming from
other correlators since the spectrum might be confined even further. Includ-
ing 〈σεσε〉 and 〈εεεε〉 for example would be nice to start with. The former is
crossing symmetric in the σ × ε expansion and as can be seen from (5) the
conformal block of σ will appear with the same coefficient f2

σσε as the con-
formal block of ε in the 〈σσσσ〉 analysis. The latter correlator is interesting
because its expansion involves the same Z2-even operators as 〈σσσσ〉.
Overall, the conformal bootstrap technique in D > 2 has shown itself fruit-
ful to examine CFTs. With regards to the 3D Ising model, it hasn’t been
solved yet, but interesting behaviour and enough future perspective has been
revealed.
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Appendix A Some basic Conformal Field Theory

Many books and articles have been written about CFTs and for the reader
who is unfamiliar with this topic, this large amount of study material might
be overwhelming. Therefore, we included a short summary of some basic
CFT knowledge which we used to further build on in the rest of the arti-
cle. We will discuss the difference between scale invariance, Weyl invariance
and conformal invariance. Then we will give all the transformations in the
conformal group and the corresponding operators. We will also explain the
concept of radial quantization and state-operator correspondence, which is
fundamental to CFT. For this appendix, we have mostly taken content from
[7, 2, 15].

A.1 Scale and Weyl invariance

In (Effective) Quantum Field theories (QFTs) running coupling constants
show up. This means that the coupling constants related to some interaction
term in the Lagrangian take different values at different energy scales. The
way these couplings run with the energy scale is determined by the beta
function. The beta function differs for each system and can be calculated
using the Callan-Symanzik equation,[

µ∂µ +
∑
i

βλi∂λi − nγ

]
Γn,m = 0,

where γ is the anomalous dimension, µ is the energy scale, λ is the coupling
and Γn,m are the n-point functions. The zero points of the beta function are
called fixed points. At those fixed points the couplings do not change with
the energy scale and the theory is said to be scale invariant. The two-point
function of two scalar operators O (no spin) has the form,

〈O1(x)O2(y)〉 ∝ 1

|x− y|2∆
,

where ∆ is the dimension of the operators. The dimensions of the two
operators must be the same. The two-point function must have this form
due to translational and scale invariance 1.
A theory is scale invariant under a scale transformation x → λx, or in the
infinitesimal form x→ x+ δλx, if the action satisfies ,

S[x,O∆(x), gµν ] = S[λx, λ−∆O∆(x), gµν ]
λx→x

= S[x, λf−∆O∆(x), λ2gµν ],

where gµν is the metric and f denotes the number of indices of the opera-
tor O∆ because this will define how O∆ will transform under a coordinate
transformation,

O′µν...(y) =
∂xα

∂yµ
∂xβ

∂yν
. . .Oαβ...(x).

1See also [2, p. 30-31] for a derivation.
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This will lead to the constraint,

δS =

〈∫
ddxTµνg

µν√g
〉

=

〈∫
ddxTµµ

√
g

〉
= 0,

This constraint reduces to Tµµ = ∂µG
µ for some function Gµ for a flat metric.

Tµν is the energy momentum tensor.

There is another type of ‘symmetry’ called Weyl invariance. It is actually not
a real symmetry since it changes the metric, but rather an equivalence. We
have a transformation of the form gµν(x) → Ω(x)gµν(x), or in infinitesimal
form, gµν(x)→ gµν(x)+ω(x)gµν(x). A theory is Weyl invariant if the action
obeys,

S[x,O∆(x), gµν ] = S[x,Ω−∆(x)O∆(x),Ω2(x)gµν(x)].

This leads to the constraint,

δS =

〈∫
ddx
√
gTµνg

µνω(x)

〉
= 0,

which will give Tµµ = 0, a traceless energy momentum tensor. It looks
very similar to the constraint for scale invariance, but Ω(x) is coordinate
dependent as opposed to λ, which means that we cannot get rid of the factor
Ω2(x) in front of the metric by a coordinate transformation. Therefore, the
metric changes non-trivially and we are looking at two different manifolds
before and after the transformation. This is also why we cannot really call
Weyl invariance a symmetry.

A.2 Conformal invariance

Conformal invariance can be thought of as somewhere in between scale in-
variance and Weyl invariance. It has more symmetry than scale invariance,
namely also invariance under special conformal transformations as we will
see later on, but is less constraining than Weyl invariance, where the stress
energy tensor must be traceless and not only a second derivative of some
function. A conformal transformation leaves the angle between vectors in-
variant. It can be defined as a coordinate transformation which acts on the
metric as a Weyl transformation [18]. It is a Weyl transformation where we
can get rid of the factor Ω2(x) by a coordinate transformation, so we have a
diffeomorphism between the two manifolds before and after the transforma-
tion. For a general coordinate transformation x → x′, the metric changes
under a conformal transformation in such a way that the transformation
obeys,

gµν(x)Λ(x) = g′µν(x′) =
∂x
′ρ

∂xµ
∂x
′σ

∂xν
gρσ(x′)

The theory is conformally invariant if

S[x,O∆(x), gµν(x)] = S[x′,O′∆(x′), g
′
µν(f(x′))] = S[x′,O′∆(x′), gµν(x)]
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We used a Weyl transformation to get the metric back in its original form.
From this we get the constraint (this involves some algebra),

δS =

∫
ddxLρµ∂ρ∂µ∂νε

ν

Using Noether’s theorem this reduces to Tµµ = ∂α∂βL
αβ, where Lαβ is some

general function. In this expression εµ is the conformal vector and can take
the forms,

εµ = aµ aµ = cst translations

εµ = ωµνx
ν ωµν = antisymm Lorentz transformations

εµ = λxµ λ = cst scale invariance

εµ = bµx2 − 2χµbνx
ν special conformal transformations

A theory that is Weyl invariant (Tµµ = 0) is also conformally invariant
(Tµµ = ∂α∂βL

αβ). This can be seen straight away. It can also be shown
that the opposite is true in any dimension: a theory that has conformal
symmetry also has Weyl invariance. This can be achieved by redefining
the energy momentum tensor. We will not show it here, since it is not of
current interest. The relation between scale invariance and conformal invari-
ance however is. In two dimensions – and trivially also in one dimension –
Zlamodichov and Polchinski [11, 21] have shown that scale invariance also
implies conformal invariance. So far, this has not been proven yet for three
dimensions.

Let us go back to the conformal transformations that we found. We can
define an operator for each of these transformations which transforms a
function f(x)→ f(x) +Oεf(x). The operators are,

Pµ = i∂µ translations

Mµν = i(xµ∂ν − xν∂µ) Lorentz transformations

D = −ixµ∂µ scale invariance

Kµ = i(x2∂µ − 2xµx
ν∂ν) special conformal transformations

We can interpret D as a Hamiltonian, governing the evolution of states in
our theory. Now it is not an evolution in time, as we would get with a
normal Hamiltonian, but a dilatation. Furthermore, we can interpret Pµ
as a raising operator because [D,Pµ] = iPµ and Kµ as a lowering operator
because [D,Kµ] = −iKµ. D acts on the vacuum and on a state created b,y
O∆ in the following way,

D |0〉 = 0

D |∆〉 = DO∆(0) |0〉 = [D,O∆(0)] |0〉 = i∆ |∆〉 .

Acting with D on a state gives the dimension of the operator creating that
state. We can divide the operators in two classes, primaries and descendants.
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Figure 11: Mapping from Rd to Sd−1 × R. Source: [15]

Primary operators having dimension ∆ = h + h̄, where h is the conformal
weight, transform as follows under a conformal transformation z → f(z):

O∆(z, z̄)→ O′∆(z′, z̄′) =

(
∂f(z)

∂z

)h(∂f̄(z̄)

∂z̄

)h̄
O∆(f(z), f̄(z̄))

Note that this equation is written in the language of 2D CFTs, where we
have a complex space parametrized by z and z̄. However, in 3D, primary
operators will transform in the same way under a conformal transformation.

For primary operators, [Kµ,O∆(0)] = 0. Since Kµ can be thought of as a
lowering operator the primaries are the lowest dimensional operators. The
descendants can be found by acting on the primaries with the raising oper-
ator Pµ,

O∆,µ1,...,µn = [Pµ1 , . . . [Pµn ,O∆] . . . ]

.
The spectrum of operator dimensions is bounded from below because [Kµ,O∆(0)] =
0 for primary operators, so there exist a lowest value for the dimension of
primaries. Descendants are formed by raising the dimension and will thus
always have a higher dimension. The dimension of the primary operators
must be larger than a certain value, depending on the spin of the operator,
to get a unitary (or reflection positive in Euclidean space) theory where all
states have nonnegative norms. If the dimension of the primaries is too low,
states will have negative norms which is not well-defined. The values are,

∆ ≥ D

2
− 1 l = 0 (26)

∆ ≥ l +D − 2 l 6= 0, (27)

where D is the dimension of the theory considered and l the spin of the
operator.
Conformal field theories are usually defined on an infinite space-time cylinder
R×SD−1.Time is running from −∞ to∞ along the long axis of the cylinder
and space is compactified on Sd−1 with the coordinate x running from 0 to
L and (0, t) = (L, t). Because the space is now compactified, the spectrum of
the theory will be quantized. We can map the cylinder to the (complex) plane
(see Figure 11) where we will have concentric circles with a radius that is
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growing with time. τ = −∞ is mapped to the origin of the concentric circles
and τ =∞ lies infinitely far away. This process is called radial quantization.
Since D acts as a Hamiltonian and the evolution of a state (now living on the
circumference of the cylinder) is given by eiDτ |∆〉 = ei∆τ |∆〉, the spectrum
that is quantized is the spectrum of dimensions of operators. Now we can
think of states as created by primary operators inserted at the origin [7],

|∆〉 = lim
x→0
O∆(0) |0〉 .

Those states have well defined dimension ∆ and are annihilated by Kµ. We
can also think of this the other way around. For states with a well defined
dimension ∆ that are annihilated by Kµ, we can construct a local primary
operator O∆ which we can insert at the origin to create this state. The fact
that we can do this both ways is called the state-operator correspondence.

Appendix B Recursion relations for conformal blocks

Using the same functions as [5] do we write the conformal blocks as,

G∆,l = Fλ1,λ2 , λ1 =
1

2
(∆ + l), λ1 =

1

2
(∆− l) (28)

Next to this we introduce the functions,

βp ≡
p2

4(2p− 1)(2p+ 1)
, (29)

F0 ≡
1

z
+

1

z̄
− 1

F1 ≡ (1− z)∂z + (1− z̄)∂z̄ (30)

F2 ≡
z − z̄
zz̄

(Dz −Dz̄), where Dz ≡ z2(1− z)∂2
z − z2∂z

It was shown in [5] that FiFλ1,λ2 can be written as linear combinations of
Fλ′1,λ′2 . Following [19] we can write,

F0Fλ1,λ2 =
l + 2α

l + α
Fλ1,λ2−1 +

l

l + α
Fλ1−1,λ2

+
(∆− 1)(∆− 2α)

(∆− 1− α)(∆− α)

(
l + 2α

l + α
βλ1Fλ1+1,λ2 +

l

l + α
βλ2−αFλ1,λ2+1

)
(31)

F1Fλ1,λ2 =
l + 2α

l + α
Fλ1,λ2−1 +

l

l + α
(λ1 + α)Fλ1−1,λ2

+
(∆− 1)(∆− 2α)

(∆− 1− α)(∆− α)
(
l + 2α

l + α
(−λ1 + α+ 1)βλ1Fλ1+1,λ2

+
l

l + α
(λ2 + 2α+ 1)βλ2−αFλ1,λ2+1) (32)

F2Fλ1,λ2 = (∆− 1)
l(l + 2α)

l + α
[Fλ1,λ2−1 − Fλ1−1,λ2

− (∆− 2α)(∆− 1− 2α)

(∆− 1− α)(∆− α)
(βλ1Fλ1+1,λ2 − βλ2−αFλ1,λ2+1)] (33)
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In order to find a recursion relation we can combine two equations, say F0

and F2, to eliminate one of the terms Fλ′1,λ′2 . Say we eliminate Fλ1+1,λ2 . To
do so we compute a linear combination of F and F2. It gives us,

1

2
[(∆− 1− 2α)F0 +

F2

l
]Fλ1,λ2 = (∆− 1− α)

l + 2α

l + α
Fλ1,λ2−1 −

α(∆ + l − 1)

l + α
Fλ1−1,λ2

+
(∆− 1)(∆− 2α)(∆− 1− 2α)

(∆− 1− α)(∆− α)
βλ2−αFλ1,λ2+1

(34)

Shifting the spin, l = l − 1, and noticing this is equivalent to shifting λ2 =
λ2 + 1 such that ∆ = ∆ + 1 we can write this expression in terms of the
conformal blocks again as,

(∆− α)(l + 2α− 1)

l + α− 1
G∆,l =

α(∆ + l − 1)

l + α− 1
G∆,l−2 +

1

2
[(∆− 2α)F0 +

F2

l − 1
]G∆+1,l−1

− ∆(∆− 2α)(∆− 2α+ 1)

(∆− α)(∆− α+ 1)
β 1

2
(∆−l+2−2α)G∆+2,l−2

(35)

However, as z = z̄ – which is the case we’re interested in – we see from (30)
that F2 vanishes. Writing α = D/2− 1 again and multiplying both sides by
2(l + α− 1) we’re left with the non-derivative recursion relation,

(l +D − 3)(2∆ + 2−D)G∆,l = (D − 2)(∆ + l − 1)G∆,l−2

+
2− z

2z
(2l +D − 4)(∆−D + 2)G∆+1,l−1

− ∆(2l +D − 4)(∆ + 2−D)(∆ + 3−D)(∆− l −D + 4)2

16(∆ + 1− D
2 )(∆− D

2 + 2)(l −∆ +D − 5)(l −∆ +D − 3)
G∆+2,l−2

(36)

Note that this relation is especially useful along the line z = z̄ and that it
can be used to compute high spin conformal blocks efficiently. However, we
need two conformal blocks as input to be able to do calculations, whereas we
only have one available, namely G∆,0. Luckily we can consider a different
combination of functions, that of F0 and F1, and find a recursion relation
for which only one block is needed. We use this relation to find G∆,1 from
G∆,0 in Appendix C but then calculate all higher spin blocks using (36).

To find the recursion relation resulting from combining F0 and F1, or (31)
and (32), the same logic as before is applied. After first computing (F1 +
(λ1 − α − 1)F0)Fλ1,λ2 to eliminate Fλ1+1,λ2 again, then shifting the spin in
the same way, i.e. l = l − 1, λ2 = λ2 + 1, ∆ = ∆ + 1, and passing to the
G∆,l notation, we get:

(∆− α)(l + 2α− 1)

(l + α− 1)
G∆,l =

(
1

2
(∆ + l − 2α− 2)F0 + F1

)
G∆+1,l−1

− (l − 1)

(
∆(∆− 2α+ 1)

(∆− α)(∆− α+ 1)
β 1

2
(∆−l+2−2α)G∆+2,l−2 +

∆ + l − 1

l + α− 1
G∆,l−2

)
(37)
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One can see directly that it can be used to compute G∆,1 since the last two
terms vanish in this case.

Appendix C Conformal blocks of spin 0 and 1

According to [19] for scalar exchange (l = 0) conformal blocks have a double
power series representation,

G∆,0(u, v) = u∆/2
∞∑

m,n=0

[(∆/2)m(∆/2)m+n]2

m!n!(∆ + 1− D
2 )m(∆)2m+n

× um(1− v)n (38)

Here (q)n is the rising Pochhammer symbol which is defined as,

(q)n =

{
1 n = 0

q(q + 1) · · · (q + n− 1) n > 0
(39)

From this definition we can see that (∆/2)m+n = (∆/2)m(m + ∆/2)n and
likewise that (∆)2m+n = (∆)2m(2m+∆)n. Therefore, using the power series
expansion of the hypergeometric function,

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (40)

we can rewrite (38) as,

G∆,0(u, v) =
∞∑
m=0

((∆/2)m)4

m!(∆− α)m(∆)2m
u

∆
2

+m × 2F1(m+
∆

2
,m+

∆

2
; 2m+ ∆; 1− v)

(41)

where α = D/2− 1 now.
Now we use the integral representation of 2F1,

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt
tb−1(1− t)c−b−1

(1− tx)a
. (42)

Substituting it in (41) we see,

G∆,0(u, v) =
∞∑
m=0

((∆/2)m)4

m!(∆− α)m(∆)2m
u

∆
2

+m

× Γ(2m+ ∆)

Γ(m+ ∆
2 )Γ(m+ ∆

2 )

∫ 1

0
dt
tm+ ∆

2
−1(1− t)m+ ∆

2
−1

(1− tx)m+ ∆
2

=
Γ(∆)

Γ(∆
2 )2

∫ 1

0

dt

t(1− t)

(
(1− t)tu

1− t(1− v)

)∆/2

×
∞∑
n=0

(∆
2 )n

∆
2 )n

n!(∆− α)n

(
(1− t)tu

1− t(1− v)

)n
=

Γ(∆)

Γ(∆
2 )2

∫ 1

0

dt

t(1− t)
X∆/2

2F1(
∆

2
,
∆

2
; ∆− α;X). (43)
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In the second step we used that since Γ(z) =
Γ(z + n+ 1)

z(z + 1) · · · (z + n)
, we have

that Γ(∆) =
Γ(∆ + 2m)

(∆)2m
and

1

Γ(∆/2))
=

(∆/2))m
Γ(m+ ∆/2)

. In the last step we

simply defined the variable,

X =
(1− t)tu

1− t(1− v)
. (44)

Now let us use the hypergeometric identity,

2F1(a, b; c; z) = (1− x)−b2F1(c− a, b; c; z

z − 1
) (45)

and the fact that from a powerserie point of view the hypergeometric function
is symmetric under the exchange of a and b. Then we can write,

G∆,0(u, v) =
Γ(∆)

Γ(∆
2 )2

∫ 1

0

dt

t(1− t)
Y ∆/2

2F1(
∆

2
,
∆

2
− α; ∆− α;−Y ), (46)

where Y =
X

1−X
=

t(1− t)zz̄
(1− tz)(1− tz̄)

.

Now we can replace 2F1 by its powerseries expansion and integrate the series
term by term. Since we’re only interested in the case z = z̄ this becomes
even simpler. Using Mathematica to calculate the integrals, [19] claims to
find,

G∆,0|z=z̄ =

(
z2

1− z

)∆/2 ∞∑
n=0

[(∆/2)n]3(∆/2− α)n
n!(∆)2n(∆− α)n)

(
z2

z − 1

)n
. (47)

Now using the series expansion of 3F2,

3F2(a1, a2, a3; b1, b2; z) =
∞∑
n=0

(a1)n(a2)n(a3)n
(b1)n(b2)n

zn

n!
, (48)

we can write (47) as,

G∆,0(z) =

(
z2

(1− z)

)∆/2

3F2

(
∆

2
,
∆

2
,
∆

2
− α;

∆ + 1

2
,∆− α;

z2

4(z − 1)

)
(49)

Here we used that (∆/2)n
(∆)2n

= 1
4n

1

(
∆+1

2 )n
. Equation (49) is the expression that

we use to describe the spin 0 conformal block along the line z = z̄.

It also helps us to find an expression for the spin 1 conformal block, G∆,1,
along the z = z̄ line. To do so, we use the recursion relation (37) derived in
Appendix B which for l = 1 it reduces to,

G∆,1(z) =
1

2(∆− α)

(
1

2
(∆− 2α− 1)F0 + F1

)
G∆+1,0(z)
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Substituting the expression for the zero spin conformal block for ∆ = ∆ + 1
and the ones for F0 and F1 one sees that after making a (partly) change of

variables of z 7→ y ≡ z2

4(z−1) which is done for ease of notation the expression
for the spin 1 conformal block G∆,1 comes down to,

G∆,1(z) =
2− z

2(∆− α)z

(
z2

1− z

)∆+1
2

[y∂y + ∆− α]f(y) (50)

The function f(y) is simply the hypergeometric function appearing in the
expression for G∆+1,0. Now using the identity for hypergeometric functions,

[y∂y + b2 − 1]3F2(a1, a2, a3; b1, b2; y) = (b2 − 1)3F2(a1, a2, a3; b1, b2 − 1; y)
(51)

we find the final expression for the spin 1 conformal block,

G∆,1(z) =
2− z

2z

(
z2

1− z

)∆+1
2

3F2

(
∆ + 1

2
,
∆ + 1

2
,
∆ + 1

2
− α;

∆

2
+ 1,∆− α;

z2

4(z − 1)

)
.

(52)

Appendix D Recursion relation hm,n

As justified in [19, 4] we use that conformal blocks satisfy a second-order
differential equation,

DG∆,l(z, z̄) =
1

2
C∆,lG∆,l(z, z̄), (53)

where C∆,l ≡ ∆(∆−D) + l(l +D − 2) and

D ≡ (1− z)z2∂2
z −

(
z2 − (D − 2)

zz̄(1− z)
z − z̄

)
∂z + (z ↔ z̄). (54)

Making a change of variables z = (a +
√
b)/2, z̄ = (a −

√
b)/2 the last

expression takes the form,

D = (2− a)a2

[
1

2
(D − 1)∂b + b∂2

b

]
+ (2− 3a)b2∂2

b +

[
1

2
(D − 9)a− a(3a− 4)∂a −D + 3

]
b∂b −

1

4
Da2∂a

+
1

4
(2− a)a2∂2

a − b2∂a∂b + [
1

4
(D − 4)∂a +

1

4
(2− 3a)∂2

a]b (55)

To deduce a recursion relation to calculate hm,n we apply ∂ma ∂
n
b on (53) where

obviously D takes the form as in (55). Note that since we’re considering the
point z = z̄ = 1

2 we can set a and b to a = 1, b = 0. After shifting n 7→ n− 1
we find,

2(D+2n− 3)hm,n = 2m(D + 2n− 3)

× [−hm−1,n + (m− 1)hm−2,n + (m− 1)(m− 2)hm−3,n]

− hm+2,n−1 + (D −m− 4n+ 4)hm+1,n−1

+ [2C∆,l + 2D(m+ n− 1) +m2 + 8mn− 9m+ 4n2 − 6n+ 2]hm,n−1

+m[D(m− 2n+ 1) +m2 + 12mn− 15m+ 12n2 − 30n+ 20]hm−1,n−1

+ (n− 1)[hm+2,n−2 − (D − 3m− 4n+ 4)hm+1,n−2]. (56)
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