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1 Abstract
Conformal field theories are quantum field theories that are invariant under confor-
mal transformations; they have several important applications, including in condensed
matter physics and string theory. Boundary conformal field theories are CFTs on a
domain with a boundary, which has consequences for basic quantities in the theory
such as Ward identities, the stress-energy tensor, and also the conformal weights.

Our aim is to examine some of the implications of introducing boundary conditions
to a CFT. We begin by recounting a few basics of regular CFT; namely, the stress-
energy tensor T , operator product expansions (OPEs), Ward Identities, and primary
operators. We present a detailed derivation of the Ward Identities, then proceed to
consider how these change under boundary conditions. We present a derivation of
the BCFT Ward Identity. Lastly, we examine how consideration of CFTs on differ-
ent, conformally related manifolds can reveal some of the underlying structure of the
CFT.
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2 Conformal field theory
In this section we will compute the conformal Ward identities in a domain without
boundaries.

2.1 The stress-energy tensor

Consider a manifoldM, described by a metric gαβ, and a general infinitesimal trans-
formation:

σµ → σ′µ = σµ + εµ(σ)

We can define the stress-energy tensor Tµν in terms of the variation of the action:

δS =
1

2π

∫
√
gT µν∂νεµd2σ (2.1)

where {σµ} are a set of Euclidean coordinates. A few comments can be made about
this expression:

1. if the action S is invariant under translations and rotations, then Tµν is a con-
served and symmetric quantity

2. if the action S is scale invariant, then Tµν is traceless

Now we switch to complex coordinates {z, z̄}. Imposing the conditions mentioned
above, along with the conservation law, the components of the stress-energy tensor
are:

Tzz̄ = Tz̄z = 0

∂ z̄Tzz = ∂zTz̄z̄ = 0

The last expression, in particular, tells us that the components Tzz and Tz̄z̄ are re-
spectively holomorphic and anti-holomorphic. We can redefine them as:

Tzz = T (z)

T̄z̄z̄ = T̄ (z̄)

This is a key feature of our calculations, since it allows us to treat z and z̄ as in-
dependent variables and therefore to treat separately the holomorphic and the anti-
holomorphic parts of the theory.
We can also define the conserved currents J and J̄ as:{

J = T (z)ε(z)

J̄ = T̄ (z̄)ε̄(z̄)
(2.2)
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2.2 Operator Product Expansion

Consider a CFT which contains some set of local operators {Oi}. Then an operator
product expansion (OPE) approximates two local operators at nearby points inside
time-ordered correlation functions by a string of operators at one of these points:

〈Oi(z, z̄)Oj(w, w̄) . . . 〉 =
∑
k

Ckij(z − w, z̄ − w̄)〈Ok(w, w̄) . . . 〉 (2.3)

where the . . . represents some arbitrary set of other operator insertions, as long as
these other insertions are at a sufficiently large distance compared to |z − w|. The
OPE is then, in fact, an exact statement with a radius of convergence equal to the
distance to the next nearest insertion. In our derivations we will often omit them,
but the expressions we write must always be intended as inside the brakets.

2.3 Ward identity

To derive the Ward identities we will use the path integral formalism. We will at
first derive our out theory changes after an infinitesimal transformation, then we will
proceed imposing that transformation to be conformal.
Consider the following path integral:

Z =

∫
e−S[φ]Dφ (2.4)

we want to see how it changes if we make an infinitesimal transformation of the form
φ→ φ′ = φ+ ε(σ)δφ.

Z → Z ′ =

∫
e−S[φ′]Dφ′ =

∫
e−S[φ]−δSDφ′ =

∫
e−S[φ]e−δSDφ′

Now we can expand the term e−δS ' 1− δS and rewrite the expression as:∫
e−S[φ]

(
1− 1

2π

∫
d2σ
√
gJα∂αε(σ)

)
Dφ′ (2.5)

We want the infinitesimal transformation to be a symmetry of our theory, and this
requires that it leaves invariant both the action and the measure of the path integral:

1. S[φ′] = S[φ]

2. Dφ′ = Dφ

These conditions together imply that
∫
Dφ′e−S[φ′] =

∫
Dφe−S[φ] and therefore:

1

2π

∫
Dφe−S[φ]

(∫
d2σ
√
gJα∂αε(σ)

)
= 0 (2.6)
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Using integration by parts, we can rewrite the term Jα∂αε = ∂α(Jαε)− ∂αJαε and
since the total derivative term can be neglected, we find ourselves with

1

2π

∫
Dφe−S[φ]

(∫
d2σ
√
g∂αJ

αε

)
= 0 (2.7)

This equation must hold for any ε therefore:

∂αJ
α = 0 (2.8)

which is Noether’s theorem.
Consider now the correlation function between N operators Oi:

〈O1 . . .ON〉 =
1

Z

∫
Dφe−S[φ]O1 . . .ON (2.9)

We want to consider a conformal transformation. However, instead of having it acting
on the entire manifoldM we will define it as being non-zero only in a region around
an operator, for example O1 acting on the point σ1. This is equivalent to choosing a
contour C around σ1 such that the operator will transform as:

O1 → O′1 = O1 + ε(σ)δO1 (2.10)

with ε = 0 outside the contour C.

Figure 1: Definition of the contour C

Using equation (2.5), we can rewrite (2.9) as

〈O′1 . . .O′N〉 =
1

Z

∫
Dφe−S[φ]

(
1 +

1

2π

∫
C
d2σ
√
g∂αJ

αε

)
(O1 + εδO1)O2 . . .ON =

(2.11)
1

Z

∫
Dφe−S[φ]O1 . . .ON+

1

2π

1

Z

∫
Dφe−S

∫
C
d2σ
√
g∂αJ

αεO1 . . .ON+
1

Z

∫
Dφe−SεδO1 . . .ON+o(ε2)
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= 〈O1 . . .ON〉+
1

2π

∫
C
d2σ
√
g∂α〈JαO1 . . .ON〉+ 〈δO1 . . .ON〉 = 〈O1 . . .ON〉

Once again if we want to consider a transformation that is a symmetry we need this
equation to hold for any ε, which means:

〈δO1 . . .ON〉 = − 1

2π

∫
C
d2σ
√
g∂α〈JαO1 . . .ON〉 (2.12)

This is the Ward identity for a generic symmetry.
We can easily apply this result to the specific case of a conformal symmetry with a
few more steps. First we are going to use the Stokes’ theorem:∫

C
d2σ
√
g∂αJ

α =

∮
∂C
Jαn̂α

√
gd2σ =

∮
∂C

(J1dσ2 − J2dσ1) = −i
∮
∂C

(Jzdz − Jz̄dz̄)

Where in the last step we switched to complex coordinates z, z̄. The Ward identity
then becomes:

〈δO1 . . . 〉 =
i

2π

∮
∂C

dz〈Jz(z, z̄)O1 . . . 〉 −
i

2π

∮
∂C

dz̄〈Jz̄(z, z̄)O1 . . . 〉 (2.13)

where now the coordinates {σi} have become complex too, {w, w̄}. At this point we
use that fact that, for a conformal symmetry, the conserved currents J and J̄ are,
respectively, holomorphic and anti-holomorphic. Therefore we can apply to those
integrals Cauchy’s theorem and, treating once again z and z̄ as independent variables,
the Ward identities can be split in the following two equations:

δO1(w, w̄) =
i

2π

∮
∂C

dzJ(z)O1(w, w̄) = −Res[J(z)O1(w, w̄)] (2.14)

δO1(w, w̄) = − i

2π

∮
∂C

dzJ̄(z̄)O1(w, w̄) = −Res[J̄(z̄)O1(w, w̄)] (2.15)

Note: the boundary ∂C is taken, in the second integral, in opposite direction with
respect to the first integral.
We can rewrite equations (2.14) and (2.15) using equation (2.2)

δO1(w, w̄) = −Res[ε(z)T (z)O1(w, w̄)] (2.16)

δO1(w, w̄) = −Res[ε̄(z̄)T̄ (z̄)O1(w, w̄)]

2.4 Primary operators

We are mainly interested in primary operators, since all the others are descendants,
and knowing the primaries would allow us to know all the coefficients in the OPE,
and therefore the whole theory. Under a conformal transformation of the form{

z → w = z + ε(z)

z̄ → w̄ = z̄ + ε̄(z̄)
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a primary operator transforms in the following way:

O(w, w̄) =

(
∂w

∂z

)h(
∂w̄

∂z̄

)h̄
O(z, z̄) (2.17)

where h and h̄ are the conformal weights.
Once again we will consider the coordinates z and z̄ to be independent and we will
treat separately the holomorphic and the anti-holomorpic parts. For an infinitesimal
transformation, ε(z) is small enough to allow us to expand the derivatives:(

∂w

∂z

)h
= (1 + ∂zε(z))h ' (1 + h∂zε(z))

Using the Taylor expansion we can also expand the operator O(z, z̄) around {w, w̄}

O(z) ' O(w) + ∂zO(w)(z − w) + o(z2) = O(w)− ε(z)∂zO(w) + o(z2)

We can derive the variation of an operator under conformal transformation as follows:

O(w) =

(
∂w

∂z

)h
O(z) ' (1 + h∂zε(z))(1− ε(z)∂z)O(w)

= O(w) + h∂zε(z)O(w)− ε(z)∂zO(w) + o(ε2)

Therefore the variation of a primary operator under a conformal transformation is

δO(w) = (h∂zε(z)− ε(z)∂z)O(w) (2.18)

We can repeat the same calculations for the anti-holomorphic part, to get:

δO(w̄) = (h̄∂z̄ ε̄(z̄)− ε̄(z̄)∂z̄)O(w̄) (2.19)

We can now equate the equations (2.16) with (2.18)

−Res[ε(z)T (z)O(w, w̄)] = (h∂zε(z)− ε(z)∂z)O(w, w̄)

ε(z)T (z)O(w, w̄) =
−h∂zε(z) + ε(z)∂z

z − w
O(w, w̄)

We can now get rid of ε(z) recalling that ε(z) = w − z, therefore ∂zε(z) = −1 which
leads to:

T (z)O(w, w̄) =
hO(w, w̄)

(z − w)2
+
∂zO(w, w̄)

(z − w)
+ . . . (2.20)

and for the anti-holomorphic part as well:

T̄ (z̄)O(w, w̄) =
h̄O(w, w̄)

(z̄ − w̄)2
+
∂z̄O(w, w̄)

(z̄ − w̄)
+ . . . (2.21)

In equations (2.20) and (2.21) we indicated with ". . . " the non singular terms of the
OPE. We found the Ward identities for a conformal transformation.
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3 Boundary CFT
We want to see how the theory changes if we impose a boundary on our manifold. So
far we have been working on a flat, 2D manifold, and we derived the Ward identities
switching to complex coordinates. In particular, we will take the boundary to be the
real axis, and consider only the upper half of the complex plane.

A quick comment can be made here about the stress energy tensor. Since our mani-
fold is flat, we found in section 2 that the off-diagonal components of the stress-energy
tensor are zero. However, this is not the case if we have a curved manifold. In that
case, an immediate consequence of imposing the boundary, would be to require the
off-diagonal components of T to vanish on the boundary. These components in fact,
represent the flow of momentum and energy, therefore imposing that they are zero is
equivalent to imposing the conservation laws. This is called the conformal bound-
ary condition.

As a result of our choice of boundary, the operators O(z, z̄) are defined only on
the upper half of the complex plane. Moreover the stress-energy tensor will no longer
split into a holomorphic and an anti-holomorphic part anymore.
The way in which we are going to attack this problem is somehow akin to the "method
of images" technique in electrodynamics: the potential for certain complicated charge
distributions can be found considering a simpler distribution that satisfies the same
boundary conditions. What we will do is to let the operator O1 vary over the whole
complex field, introducing a redefined stress-energy tensor T in the following way:

T (z, z̄) =

{
T (z) =m(z) ≥ 0

T̄ (z̄) =m(z) < 0
(3.1)

so that it satisfies the boundary condition, since on the real axis z = z̄. At this
point however we can no longer treat the the variables z and z̄ independently. This
means that we cannot separate the holomorphic and the anti-holomorphic parts of
the theory as we did in the previous section.
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Consider the same conformal transformation as before:{
z → w = z + ε(z)

z̄ → w̄ = w̄ + ε̄(z̄)

If we want to preserve the geometry of our boundary, it is necessary that the transfor-
mation is such that ¯ε(z) = ε̄(z̄). The first part of the previous derivation still holds,
until equation (2.12)

〈δO1 . . .ON〉 = − 1

2π

∫
C
d2σ
√
g∂α〈JαO1 . . .ON〉 (3.2)

Once again we will use the Stokes’ theorem and switching to complex coordinates we
will obtain

〈δO1 . . . 〉 =
i

2π

∮
dz〈ε(z)T (z, z̄)O1 . . . 〉 =

i

2π

∮
∂C

dz〈ε(z)T (z)O1 . . . 〉+
i

2π

∮
∂C̄

dz〈ε(z)T̄ (z̄)O1 . . . 〉

where ∂C̄ is a contour symmetric to ∂C that lies in the lower half of the plane.

Figure 2: The integrals over the two straight portions of ∂C and ∂C̄ cancel out

Note: in section 2 we found ourselves with two complex integral due to the fact
that we were considering separately T (z) and T̄ (z̄), while this time the two integrals
come from the fact that we defined T (z, z̄) by parts.
Once again, using Cauchy’s theorem we can write

δO = −Res[ε(z)T (z)O]−Res[ε(z)T̄ (z)O] (3.3)

The variation of the operator can be found similarly as we did for equation (2.18):

δO1(w, w̄) =

(
∂w

∂z

)h(
∂w̄

∂z̄

)h̄
O1(z, z̄) =

(1 + h∂zε)(1 + h̄∂z̄ε)(O1(w, w̄) + ∂zO1(w, w̄)(z − w) + ∂z̄O1(w, w̄)(z̄ − w̄)) + o(z2, z̄2)
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= O1(w, w̄) + h∂zεO1(w, w̄) + h̄∂z̄εO1(w, w̄) + ∂zO1(w, w̄) + ∂z̄O1(w, w̄) + o(z2, z̄2)

The last step is to compare this result with equation (3.3), to get the conformal Ward
identity:

T (z)O(w, w̄) =
hO(w, w̄)

(z − w)2
+
∂zO(w, w̄)

(z − w)
+
h̄O(w, w̄)

(z̄ − w̄)2
+
∂z̄O(w, w̄)

(z̄ − w̄)
(3.4)

This is the Ward identity for a BCFT with boundary on the real axis.
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4 The Annulus Partition Function

4.1 Virasoro Algebra

A useful mathematical structure for examining CFTs is the Virasoro Algebra. Because
of scale invariance, one may quantise states on a circle, in which case the Hamiltonian
is the dilatation operator D̂, which is defined as

D̂ =
1

2π

∫ 2π

0

rT̂rrrdθ =
1

2πi

∫
C

zT̂ (z)dz − 1

2πi

∫
C

z̄ ˆ̄T (z̄)dz̄ (4.1)

C can be any contour that contains the origin, due to Cauchy’s theorem. It is then
convenient to define the operators L̂n:

L̂n ≡ (1/2π)

∫
C

zn+1T̂ (z)dz (4.2)

and
ˆ̄Ln ≡ (1/2π)

∫
C

z̄n+1 ˆ̄T (z̄)dz̄ (4.3)

so that we can rewrite (4.1) as
D̂ ≡ L̂0 + ˆ̄L0 (4.4)

Using the TT-OPE, the OPE of T̂ with itself, one can work out the Virasoro Algebra
V :

[L̂n, L̂m] = (n−m)L̂n+m +
c

12
n(n2 − 1)δn+m,0 (4.5)

and similarly for V̄ :

[ ˆ̄Ln,
ˆ̄Lm] = (n−m) ˆ̄Ln+m +

c

12
n(n2 − 1)δn+m,0. (4.6)

The state |φj〉 ≡ φ̂j(0, 0)|0〉, where |0〉 is the vacuum state and φ̂j is the scaling
operator, is an eigenstate of both the L̂0 and ˆ̄L0 operators:

L̂0|φj〉 = hj|φj〉 (4.7)
ˆ̄L0|φj〉 = h̄j|φj〉 (4.8)

The full Hilbert space of the CFT is

H =
⊕
h,h̄

nh,h̄Vh ⊗ V̄h̄. (4.9)
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4.2 CFT on a cylinder

Consider the conformal transformation

z → z′ = e−iz (4.10)

where
z = σ + iτ (4.11)

with σ ∈ [0, 2π) is a parameterization of a Euclidean cylinder. This transformation
maps a Euclidean cylinder to the complex plane. Since CFTs are invariant under
conformal transformations, studying a particular CFT on either of these manifolds is
essentially the same as studying it on the other; anything that holds for that CFT on
either of these manifolds automatically applies to the same theory on the other.

Under conformal transformations, the stress-energy tensor T transforms as

T ′(z′) =

(
∂z′

∂z

)−2[
T (z)− c

12
S(z′, z)

]
(4.12)

where the Schwarzian S(z′, z) is given by

S(z′, z) =

(
∂3z′

∂z3

)(
∂z′

∂z

)−1

− 3

2

(
∂2z′

∂z2

)2(
∂z′

∂z

)−2

(4.13)

Then, from the Hamiltonian

H =

∫
dσTττ = −

∫
dσ(Tww + T̄w̄w̄) (4.14)

it is possible to determine that the ground state energy on the cylinder is

E = −2π(c+ c̃)

24
, (4.15)

where c and c̃ are the left- and right- moving central charges, respectively. This is
the negative Casimir energy on a cylinder.

4.3 Boundary CFT on an annulus

Something similar can be done for a conformal field theory with a boundary by con-
sidering a CFT on an annulus. The annulus can be seen as a rectangle of unit width
and height δ, with two edges identified. The remaining two edges have boundary
conditions a and b on them.

The partition function on the annulus, Zab(δ), is given by

Zab(δ) = Tre−δĤab (4.16)
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The Hamiltonian Ĥ is the generator for infinitesimal translations along an infinitely
long strip of unit width,

Ĥab = πD̂ − πc/24 = L̂0 − πc/24. (4.17)

where the last equality follows from the fact that Ln = L̄−n. This is a consequence
of the stress-energy tensor’s transformation law (4.12) applied to the circle as well as
the aforementioned conformal boundary condition. Thus, the partition function can
be written as

Zab(δ) = Tre−πδ(L̂0−c/24) =
∑
h

nabh χh(q) (4.18)

where q ≡ e−πδ and in the last expression the partition function has been decomposed
into characters.

Next consider this same partition function, this time as the path integral of a CFT
propagated for an imaginary time δ−1 on a unit circle:

Zab(δ) = 〈a|e−Ĥ/δ|b〉 (4.19)

where the Hamiltonian is now Ĥ = 2π(L̂0 + ˆ̄L0) − πc
6
. The states |a〉 and |b〉 are

boundary states that belong to H (4.9).

Again using the fact that Ln = L̄−n, any boundary state |B〉 must satisfy

L̂n|B〉 = ˆ̄L−n|B〉; (4.20)

these states form a subspace of H. Furthermore, because of the decomposition (4.9),
|B〉 can also be written as a linear combination of states from Vh⊗ V̄h̄. Taking n = 0
in (4.20) and using the eigenvalue equations (4.7) then implies h = h̄.
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