
Constructing integrable vertex models with gauge theory

Maurits Tepaske

Abstract

In this digest we will give the reader a lightning tour of a remarkable correspondence

between integrable vertex models and gauge theory, which was recently discovered in

a rather abstract guise in [1, 2] and expanded upon in [3, 4], where it was furthermore

introduced in a more common setting and language. In short, the basis of this corre-

spondence is the fact that some solutions of a particular type of 4D gauge theory, when

projected upon the space(time) in which the 2D or (1 + 1)D integrable system lives,

solve the ”classical” Yang-Baxter equation of integrable physics. These solutions more-

over display how the rich algebraic structure that accompanies integrability manifests

itself in the language of gauge theory. Due to the nature of this document quite a lot of

material and detail will be omitted; the reader is encouraged to consult the references.

I. Integrability for vertex models

Some classical statistical systems in 2D space and quantum many-body systems in (1 + 1)D

spacetime enjoy a description in terms of vertices spread across some 2D topological man-

ifold and interconnected by curves [5–8]. In one of the simplest cases, we find that such

a picture emerges for a system of contact-interacting particles in 1D space, which is fully

characterized by the crossing of particle worldlines in the corresponding (1 + 1)D spacetime.

In particular, these crossings signify the particle collisions and are the sole points of inter-

est as this theory only contains a contact interaction. In other words, the states in such a

theory are fully characterized by what occurs at the vertices of a 2D network of worldlines.

Because these vertices, being simply the nodes in a graph, characterize the topology of

our vertex-network, we find that the states in a vertex model are in fact labeled by this

topology and are hence diffeomorphism invariant. Therefore in defining such a model we

merely require the underlying base manifold to have topological structure. Therefore in

defining such a model we merely require the underlying base manifold to have topological

structure. This topological vertex situation should be compared with e.g. an Ising model,

where spins on different sites interact and which consequently requires a notion of distance,

as to distinguish nearest- from next-nearest neighbors etc. In other words, we would need

the more complicated metric manifold.

In the figure below we show the vertex on a pair of crossing worldlines and a particular
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vertex-network state (satisfying z-conservation) constructed out of such vertices.1 Here

we chose a specific combination of incoming versus outgoing z’s, but we equivalently could

have swapped z1 and z2 in the final line configuration. Similarly, in the right figure we chose

to label horizontal and vertical lines as a whole.

In this figure we introduced some notation that accompanies a further restriction to the

dynamics of our vertex theory. First off, we labeled each line with a complex ”spectral pa-

rameter” z that is conserved at vertices. It turns out that the integrability of a vertex model

requires such a z to be present [2, 10], and we will soon see that this extra complex quan-

tum number (labeling the curves/lines in our vertex network) plays a crucial role in uncov-

ering the algebraic structure of integrable vertex-network states. For our interpretation in

terms of particles on a 1D manifold, we first note that integrability necessarily implies that

the contact-interaction must be elastic [10], indicating that we could take a particle’s mo-

mentum as its spectral parameter. Hence the dynamics is concentrated in the internal vec-

tor spaces Vzi of worldlines, where the zi subscript indicates that V belongs to a line with

spectral parameter zi, and at each collision the state is evolved according to a linear ”R-

matrix” R(z1, z2) : Vz1 ⊗ Vz2 → Vz1 ⊗ Vz2 . In a particular basis, which was labeled with latin

indices in the figure above, we may write this as Rklij (z1, z2).

Now, it turns out that in our vertex model, quantified by R(z1, z2), the integrability con-

dition reduces to a simple relation among lines in a vertex-network state [2], as displayed in

the figure below (taken from [3]).

1Note that the exact same vertex structure arises for e.g. the ”6-vertex model” [8] that e.g. models ice

in the context of classical 2D statistical mechanics [9], in which case we envision a spin to occupy the middle

of each line, with four spins interacting at each vertex. Furthermore, a combination of both interpretations

holds for 1D quantum spin chains [6].
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It amounts to the permission of sliding a worldline over the crossing of two other lines and

is dubbed the ”Yang-Baxter” relation. In our R-matrix language it reads:

Rnmqo (z1, z2)Rqlip(z1, z3)Ropjk(z2, z3) = Rmlrt (z2, z3)Rntsk(z1, z3)Rsrij (z1, z2), (1)

where we sum over repeated indices (in the figure above this represents summing over the

internal states of the loop lines). In passing we note that the 6-vertex model mentioned ear-

lier satisfies this relation [9], making it an integrable vertex model.

Instead of looking for solutions to the full Yang-Baxter eq. (3), we will instead consider a

simpler and hence well-classified [11] variant that is defined in the presence of a perturba-

tive parameter ~, so that we may expand R(zi, zj) = I + ~r(zi, zj) + O(~2). Here we sup-

pressed the V -indices. We call rij ≡ r(zi, zj) the ”quasi-classical” R-matrix and substitute

it in eq. (1) to obtain (after expanding the products):

I + ~(r12 + r13 + r23) + ~2(r12r13 + r12r23 + r13r23) +O(~3) =

I + ~(r23 + r13 + r12) + ~2(r23r13 + r23r12 + r13r12) +O(~3). (2)

We see that the O(~2) term yields the ”classical” Yang-Baxter equation:

[r12, r13 + r23] + [r13, r23] = 0, (3)

which is quadratic in the rij as opposed to eq. (1).

II. Elements of gauge theory

To see how these integrable vertex-network states connect to gauge theory, we observe that

if we could somehow apply the well-known Wilson line and topological field theory (TFT)

technologies to a 2D topological manifold Σ (in which the vertex-model lives) we could pos-

sibly reconstruct states such as e.g. shown in the figures above. In such a QFT interpreta-

tion we might expect the standard Feynman rules apply: assigning propagators to internal
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lines and interaction vertex factors at crossings. The complexity of integrability arises when

we take into account that the integrable vertex model described in the previous section in-

cludes addition data: z, which prompts us to expand the gauge theory’s base manifold to

the product Σ× C. Hence we will be working with a 4D gauge theory.

As in [11] we will restrict ourselves to theories for which rij lives in g ⊗ g, where g is a

semi-simple complex Lie algebra, so that for a particular basis ta we may write:

rij = rabij ta ⊗ tb. (4)

As mentioned z is conserved along lines, which we transmute into the requirement that our

gauge TFT must be translation invariant along the z-coordinate on C (the spectral parame-

ter and complex coordinate are both called z). This is met by the gauge TFT action

S =
1

2π

∫
Σ×C

dz ∧ CS, CS = tr(A ∧ dA+
2

3
A ∧A ∧A), (5)

where in the well-known Chern-Simons 3-form Lagrangian CS [12–16] we introduced the

gauge field form A = Axdx + Aydy + Az̄dz̄,
2 and where tr signifies the Killing form on

g normalized as tr(tatb) = δab. Note that Ai ≡ Aai ta takes value in g, implying that the

corresponding Lie group G is the gauge group of our theory, and the Aai (x, y, z, z̄) are un-

derstood as independent complex fields over the full Σ× C.

To study the gauge-properties of eq. (5), we note that dCS may be rewritten as the ”sec-

ond Chern form” tr(F ∧F ) [17] (with the field strength F ≡ dA+A∧A), which is of course

gauge-invariant under δg : A→ gAg−1 + gd(g−1) (with g ∈ G) since F is. Consequently,

dδgCS = δgdCS = δg tr(F ∧ F ) = 0 −→ δgCS = dζ, (6)

showing that CS is invariant under homotopically trivial gauge-transformations (ζ denotes

some boundary 2-form) and hence that S defines a proper gauge theory. Furthermore, the

topological nature of the TFT described by S is encapsulated by the equation of motion,

derived from the arbitrary first order variation δA (using that δA, being a derivation, satis-

fies the product rule on the wedges):

δS = 0 −→ 1

π

∫
Σ×C

dz ∧ tr(δA ∧ (dA+A ∧A)) = 0 −→ F = 0, (7)

which implies that all local gauge-invariant observables vanish, as these are of course neces-

sarily constructed out of the gauge-invariant F . We conclude that the gauge field has trivial

local dynamics as required.

2Note that Azdz is excluded due to the required translation invariance along z, which motivated the dz

in eq. (5). Moreover, we could have equivalently interchanged the roles of z and z̄.
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This tells us that if we want to extract any physics from eq. (5), we must consider non-

local gauge-invariants, which allow us to define non-trivial quantum numbers that relate to

the base manifold topology. A simple example concerns the winding number of loops on S1,

which gives rise to an instanton sector for e.g. the free boson [13, 18], but in our case we

will need the more sophisticated Wilson loop apparatus. In particular, we will consider the

behavior of Ai as we transverse a loop L in Σ × C, which we choose to quantify with the

”Wilson loop” W :

W = trρ P exp
( ∮

L
Ai(x, y, z, z̄)dx

i
)
, (8)

where P denotes path-ordering and trρ once again signifies the Killing form. It can be shown

that the argument ξ of trρ in eq. (8), the closed Wilson line, transforms in some representa-

tion ρ of our gauge algebra g [19] (in which we hence also defined trρ), i.e. ξ → UξU−1 for

U ∈ ρ.3 Hence the cyclicity of tr implies that W is gauge-invariant.

Crucially, since by definition our gauge field Ai does not contain Az, we see that eq. (8)

is trivial for L ∈ C with x, y constant, as only z̄ is allowed to vary. In other words, we are

led to consider L ∈ Σ with z constant, which corresponds to a loop labeled by z living in

a 2D topological space (so that only i = 1, 2 contribute). These are precisely the features

that our lines in the vertex-network states from section I possessed! Accordingly, instead of

using W to label homotopically inequivalent loops, as in the S1 winding example, we use

it to define a quantum number that represents the amount of nodes in a network of Wilson

loops.

It turns out that eq. (5) and hence all the structure that followed (and will follow) can be

generated by deforming N = 1 supersymmetric gauge theory and any N = 2 supersym-

metric field theory [1, 2], by using the supercharges to induce the invariance structure on

Σ× C.

III. Quasi-classical R-matrix from perturbative gauge theory

To quantify the correspondence between 2D integrable vertex models and 4D gauge the-

ory sketched at the end of last section, we need to consider the quantum properties of our

gauge TFT in perturbation theory, to which end we quantize eq. (5) via the Euclidean path

integral:

〈O〉 =

∫
DAO exp

(
−S
~

)/∫
DA exp

(
−S
~

)
, (9)

3Specifically, (local) gauge transforming a Wilson line reduces to separate G-transforms U,U ′ ∈ ρ on its

ends [17], so that by forming a loop we find that ξ transforms in ρ.
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where O is an arbitrary operator insertion. We consider the loop-counting4 parameter ~ to

be variable, so that we may take the semi-classical limit ~ → 0 upon finishing our calcula-

tion, in which case it coincides with its namesake: the perturbative parameter ~ → 0 that

was used to define the quasi-classical R-matrix in section I.

As per usual, one of the main building blocks of our perturbation theory will be the Eu-

clidean propagator described by eq. (5), which we find from the corresponding free La-

grangian:

tr(A ∧ dA) = εijk tr(Ai∂jAk) = εijkAai ∂jA
b
k tr(tatb) = δabε

ijkAai ∂jA
b
k, (10)

by inverting its integral kernel [20] (reinserting the 1/2π coefficient from S and in the third

line an infinitesimal iε to avoid the IR divergence):5

〈Aai (x, y, z, z̄)Abk(x′, y′, z′, z̄′)〉 =

[
δab
2π
εijk∂j

]−1

(11)

=

∫
d4k

(2π)4

[
δab
2π
εijkkj

]−1

exp
(
−ikµ(xµ − x′µ)

)
(12)

=

∫
d4k

(2π)4

2πδabεijkk
j

2(k2 − iε)
exp

(
−ikµ(xµ − x′µ)

)
, (13)

where kµx
µ = δµνkµkν .6 In an effort to simplify this propagator, we note the well-known

d = 1 + 3 massless scalar Euclidean propagator result [20]:

〈φ(~x)φ(~x′)〉 =

∫
d4k

(2π)4

exp (−ikµ(xµ − x′µ))

k2 − iε
, (14)

so that we may write:

〈Aai (~x)Abk(~x
′)〉 = iπδabεijk∂

j〈φ(~x)φ(~x′)〉. (15)

To perform perturbative calculations in real-space we require a metric, as to define a norm

|~x|, to which end we first specialize to Σ = R2. Since we will be computing corrections to

a crossing, we find that this causes no loss of generality, because the diffeomorphism in-

variance on Σ allows us to ”zoom in” on a crossing (i.e. blow up the metric scale) until

we decide that the curvature approximately vanishes at the crossing point. This is actu-

ally what allows our local R-matrix picture to survive quantization, since by zooming in

the inter-crossing corrections will eventually become negligible compared to intra-crossing

corrections. Note that the decrease in curvature upon zooming in simply follows from the

definition of a manifold.

4This property follows from the semi-classical expansion of eq. (9) [20].
5The expectation value is with respect to the vacuum.
6Note that Latin indices run over x, y, z̄ while Greek indices run over x, y, z, z̄.
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We choose to work with a flat metric on R2 × C:

d|~x|2 = gµνdx
µdxν = dx2 + dy2 + dzdz̄, (16)

so that upon writing eq. (14) as [20]:

〈φ(~x)φ(~x′)〉 = lim
m→0

−im
4π2|~x− ~x′|

K1(m|~x− ~x′|) =
−i

4π2|~x− ~x′|2
, (17)

where K1 is a modified Bessel function and where we used limx→0K1(x) = 1/x [20], we

finally get

〈Aai (x, y, z, z̄)Abk(x′, y′, z′, z̄′)〉 = δabεijk∂
j 1

4π|~x− ~x′|2
. (18)

Note that we have completely ignored the quadratic gauge-fixing procedure which is usually

required to define a well-defined gauge propagator [19, 20], which is justified in light of the

free CS-term containing but a single derivative (see eq. 5). Of course, we must still fix a

gauge, which we choose to be ∂xAx + ∂yAy + 4∂zAz̄ = 0,7 as a result of which eq. (18)

must satisfy ∂x〈AaxA′bi 〉+ ∂y〈AayA′bj 〉+ 4∂z〈Aaz̄A′bk 〉 = 0. From eq. (18) we see that this gauge

constraint is easily incorporated by slightly modifying the normalization of some propagator

components, as will become explicit below. This is all the gauge-fixing we will need.

There is one more thing left before we are finally able to calculate some interesting per-

turbative effects. We import the gauge boson-Wilson line vertex factor from regular non-

Abelian gauge theory [21]: −itan̂, with ta in the representation of A and the line’s internal

space, and where n̂ selects the gauge field component orthogonal to the line. With these

tools at hand, let us now consider the left diagram below.

This diagram shows a one-loop quantum correction to a (zoomed-in) crossing, i.e. a cor-

rection to the R-matrix, corresponding to gauge boson exchange. The displayed ordering of

the crossing is based on the difference in (z, z̄) base points of the crossing Wilson loops, as

a result of which these loops do not cross in Σ × C, i.e. there is no loop-loop vertex factor.

The horizontal loop lies along the x-axis at (y2, z2, z̄2) and the vertical loop along the y-

axis at (x1, z1, z̄1), over which we must integrate the vertices to take into account the whole

7This is the Lorentz gauge, in the sense that consequently �Ai = 0 [3].
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configuration space of the internal gauge boson. Note that we used the diffeomorphism in-

variance on Σ to represent a Wilson loop as an infinite line.

Combining all of the above and using the usual Feynman rules, we find the following am-

putated amplitude (expanding the derivative in the (x, y)-component of eq. (18)):

iM = ~(−ita)⊗ (−itb)
∫
dxdy · −i〈Aa(x1, y, z1, z̄1)Ab(x, y2, z2, z̄2)〉

= i~ta ⊗ ta
∫ ∞
−∞

dxdy
2(z̄1 − z̄2)

2π

1

((x1 − x)2 + (y − y2) + (z1 − z2)(z̄1 − z̄2))

where M ∈ g⊗ g due to the product of Wilson line G-representations induced by the gauge

boson, and where the factor ~ is induced by the single loop. Performing the integrals yields:

M =
~ta ⊗ ta

z1 − z2
, (19)

which is the ”rational” quasi-classical R-matrix solution [3, 6, 11], i.e. rR(z1, z2) =M/~.

Hence, we have found a solution of eq. (3) by considering a gauge theory! In fact, it turns

out that this O(~) term determines the rational R-matrix to all orders [22]. For g = sl2,

with the Wilson lines transforming in the fundamental representation, it can be shown that

the rational R-matrix encodes the Heisenberg XXX spin-chain [2].

IV. Fusing lines: enhanced algebra

Next we consider the second diagram drawn above, which contains a new ingredient: the

CS interaction 3-vertex. From eq. (5) we find the corresponding Feynman rule vertex factor

η (including the symmetry factor):

dz

2π
∧ εijk tr

(
2

3
AiAjAk

)
−→ η =

i

2π
εijk tr(tatbtc)dz =

i

2π
εijkfabcdz, (20)

where tr(tatbtc) = fabc follows by using the definition [ta, tb] = f cabtc, the Killing form

tr(tatb) = δab (and consequently fabc = f[abc]), and the cyclicity of the trace. Moreover,

the upper line lies along the x-axis at y = ε, with the boson-Wilson vertex parametrized

by x1, and the lower line at y = 0, parametrized by x2; this time both lines are supported

at the (z, z̄) = (0, 0). The CS vertex is parametrized by (x, y, z, z̄) ∈ R2 × C. Again, we

will integrate over the one-loop parameters x1, x2, x, y, z and z̄ to take into account its full

configuration space.

For convenience we now define the gauge field propagator 2-form:

P ab(~x1, ~x2) = δabP =
δab

2π

(x1 − x2)dy ∧ dz̄ + (y1 − y2)dz̄ ∧ dx+ 2(z̄1 − z̄2)dx ∧ dy
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)(z̄1 − z̄2)

, (21)
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so that we drop the Latin indices in eq. (20). In this language the amputated amplitude

corresponding to the right one-loop diagram reads:

iM′ = ~ta ⊗ tb
∫ ∞
−∞

dx1dx2

∫
R2×C

−iP (x, x1; y, ε; z, 0; z̄, 0) ∧Ac ∧ i

3π
fabcdz ∧ −iP (x, x2; y, 0; z, 0; z̄, 0),

where Ac = Ac(x, y, z, z̄) denotes the external gauge field that is attached to the 3-vertex

(and which we do not amputate). Now, we mentioned earlier that a Wilson line couples

orthogonally to Ai, implying that the lines under consideration could couple to Ay and Az̄.

Since the corresponding gauge bosons are internal, we sum over their states; from eq. (21)

we have the sum of orthogonal P ab components:

P⊥ = − 1

4π

dz̄ ∧ dx∂y + 4dx ∧ dy∂z
(x− x1)2 + (y − ε)2 + zz̄

, (22)

which we substitute into iM′ above and subsequently integrate over x1, yielding a factor:

P ′ ≡ − 1

4π
(∂ydz̄ + 4∂zdy)∧dx

∫ ∞
−∞

dx1
1

(x− x1)2 + (y − ε)2 + zz̄
= −1

4
(∂ydz̄+4∂zdy)

1√
y2 + zz̄

,

where we used dy ∧ dx = −dx ∧ dy and where we set dx = 0 in the second equality since x

was eliminated. Repeating this for the propagator containing x2, we find that M′ with the

boson-Wilson couplings integrated out becomes

iM′ = − ~
2π
fabct

a ⊗ tb
∫
R2×C

P ′(y, ε; z, 0; z̄, 0) ∧Ac(x, y, z, z̄) ∧ dz ∧ P ′(y, 0; z, 0; z̄, 0).

Let us consider what happens when ε → 0, i.e. when the two Wilson lines fuse8 into a

new Wilson line that lies along the x-axis at y = 0. Due to the antisymmetry of the wedge

product and the fact that P ′ is a 1-form, it appears as if the integrand simple vanishes in

this limit. However, from P ′ above we see that it blows up at y = 0 = z, so that this argu-

ment holds everywhere but here. In fact, it turns out that [3]:

lim
ε→0

P ′(y, ε; z, 0; z̄, 0) ∧ dz ∧ P ′(y, 0; z, 0; z̄, 0) = −iπ∂zδ(3)(y, z, z̄), (23)

and consequently we find the possibly non-vanishing

M′ = −~
2
fabct

a ⊗ tb
∫
R
dx∂zA

c(x, 0, z, 0)

∣∣∣∣
z=0

, (24)

to which end we moved P ′ past Ac and integrated by parts. This result tells us that two

Wilson loops are indeed able to fuse, since it represents a Wilson loop along the x-axis at

y = 0, coupled to ∂zA
c instead of the usual Ac.

8Obviously, this is hand-waving at its finest, but it turns out that this fusing of lines be made rigorous

via an operator product expansion (OPE) construction, familiar from conformal field theory [23].
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To interpret this we are led to consider a more elaborate Wilson operator, where instead

of a single loop at (for convenience) base point (0, 0) ∈ C we consider an expansion in z

with Wilson loops, i.e. elements of a g representation, as coefficients. More specifically, this

new ”loop” has internal states that transform according to a representation of the extended

algebra g[[z]] ≡
∏
n≥0 g⊗ zn, with basis ta,n ≡ taz

n satisfying [ta,n, tb,m] = f cabtc,n+m (where

ta ∈ g and n ≥ 0). To probe its coupling to the gauge field we define the z-dependence of

Ai according to the expansion:

Ai(x, y, z, 0) =
∑
k≥0

zk

k!
∂kzAi(x, y, z, 0)

∣∣∣∣
z=0

, (25)

so that the boson-Wilson interaction vertex taAin̂ [21] yields the k = 1 interaction term:

taz∂zAi = ta,1∂zAi. Such a coupling proportional to z is foreign to the conventional Wil-

son loops from before, since those are defined for constant z. Integrating the corresponding

vertex factor over a Wilson line along the x-axis, at y = 0, evidently yields eq. (24) if we

accept that

ta,1 = −~
2
fabct

a ⊗ tb. (26)

Therefore, if we want to include the fusing of g-valued Wilson lines into our theory, we find

that closure of the corresponding fusion algebra requires us to introduce g[[z]]-valued Wil-

son lines.

The algebraic structure gets even more complicated when we realize that the upgrade

to g[[z]] only suffices for classical Wilson lines, since it is easily confirmed that the fusing

quantum correction in eq. (26) does not satisfy [ta,1, ta,1] = ta,2. We could remedy this by

adding a few terms to the commutation relations of (the universal enveloping algebra of)

g[[z]] [3], thereby giving us the ”Yangian” deformation9, which is known to be the algebra

underlying the full rational R-matrix solution [11].

V. Concluding remarks

During our journey we have seen that gauge theory is remarkably successful at incorporat-

ing structures found in integrable vertex models. Obviously, there is much more to integra-

bility than just the calculated rational r-matrix and fusing corrections, but it does seem

promising that the Wilson loop machinery is able to reproduce the Yangian and rational

r-matrix in such a natural and cohesive manner.

Indeed, it turns out that this correspondence is not peculiar to the rational solution. In

particular, by interchanging C with a more general Riemann surface, and making some

9It turns out that the O(~) correction in eq. (26) determines the Yangian to all orders [3, 4].
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slight modifications to the formalism, it is possible to reproduce the trigonometric and el-

liptic quasi-classical solutions [3, 4], and the corresponding ”quantum affine” respectively

”elliptic” algebras that underly the full R-matrix solutions [6, 11]. As before, this is done

using Wilson operators.

At this point the correspondence is still not close to being exhausted, since e.g. cancel-

lation of the anomalous gauge behavior of quantized Wilson loops yields all sorts of inter-

esting (well-known) constraints in the corresponding integrable vertex model [3]. This and

much more can be found in [3, 4], including a detailed account of the material covered in

this digest.
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