Statistical Physics & Condensed Matter Theory I: Exercise

Toy path integral

Consider a single fermionic mode described by the operators a, a^{\dagger} , with standard anticommutator $\{a, a^{\dagger}\} \equiv aa^{\dagger} + a^{\dagger}a = 1$. The Hamiltonian is simply given by $H = \varepsilon a^{\dagger}a$. We have seen that the partition function $\mathcal{Z} = \text{Tr } e^{-\beta H}$ can be written (using fermionic coherent states) as an integral over Grassmann variables,

$$\mathcal{Z} = \text{Tr } e^{-\beta H} = \int d(\bar{\psi}, \psi) e^{-\bar{\psi}\psi} \langle -\psi | e^{-\beta H} | \psi \rangle$$

where $d(\bar{\psi}, \psi) \equiv d\bar{\psi}d\psi$.

a)

We now apply the logic of the path integral. The operator $e^{-\tau H}$ is then viewed as the generator of translations in imaginary time $\tau \in [0, \beta]$. The full imaginary time interval $[0, \beta]$ can thus be split into N equal intervals, and the operator $e^{-\beta H}$ into a product

$$e^{-\beta H} = \left[e^{-\delta H}\right]^N = e^{-\delta H}e^{-\delta H}...e^{-\delta H}$$
(N times), $\delta \equiv \beta/N.$

Consider for simplicity the case N = 3. Using resolutions of the identity

$$\int d(\bar{\psi}^n,\psi^n)e^{-\bar{\psi}^n\psi^n}|\psi^n\rangle\langle\psi^n|\equiv 1$$

at time slices separating the different time intervals (in which the superindex ⁿ labels the time slice) and the properties of coherent states, explicitly show that (considering $\delta = \beta/3$ to be small) the partition function can be written as a toy path integral,

$$\mathcal{Z} \simeq \mathcal{Z}_3 = \int \prod_{i=0}^2 d(\bar{\psi}^i, \psi^i) \exp \left\{ -(\bar{\psi}^2 \bar{\psi}^1 \bar{\psi}^0) \begin{pmatrix} 1 & -\alpha & 0\\ 0 & 1 & -\alpha\\ \alpha & 0 & 1 \end{pmatrix} \begin{pmatrix} \psi^2\\ \psi^1\\ \psi^0 \end{pmatrix} \right\}$$

where $\alpha \equiv 1 - \delta \varepsilon$ and in which we have denoted $\psi^0 \equiv \psi$ (*Hint*: $e^{-\delta H} = 1 - \delta H + O(\delta^2)$), but you also have $1 + \delta x = e^{\delta x} + O(\delta^2)$!).

b)

Explicitly evaluate \mathcal{Z}_3 , using standard identities for Gaussian integration over Grassmann variables. Express your answer in terms of α .

c)

Generalize the result from part a) to N time intervals and obtain an explicit expression for the associated \mathcal{Z}_N . What does the limit $N \to \infty$ yield (*hint*: $\lim_{N\to\infty} (1 + a/N)^N = e^a$)? Explain how you could have obtained this result for the partition function in one line of calculation.

Consider now a single *bosonic* mode, with Hamiltonian $H = \varepsilon b^{\dagger} b$, and $[b, b^{\dagger}] \equiv b b^{\dagger} - b^{\dagger} b = 1$. The partition function can then be written in terms of an integral over complex variables,

$$\mathcal{Z} = \text{Tr } e^{-\beta H} = \int d(\bar{\psi}, \psi) e^{-\bar{\psi}\psi} \langle \psi | e^{-\beta H} | \psi \rangle$$

where $d(\bar{\psi}, \psi) \equiv \prod_{i=1}^{N} \frac{d\Re\psi_i d\Im\psi_i}{\pi}$. Write an expression for the corresponding \mathcal{Z}_N , calculate it, and give the result for the partition function in the limit $N \to \infty$. Is this result what you expected ? (*Hint*: $1 + a + a^2 + a^3 + \ldots = \frac{1}{1-a}$).

d)