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Introduction

The great adventure that is physics consists of three different but complementary quests. The
starting point is surely the cataloguing of all fundamental constituents of matter. As far as
everyday life is concerned, the most important of these are atomic nuclei, electrons and photons.
This list is however not exhaustive. For example, we know that nuclei are in fact composite
objects made of protons and neutrons. In turn, these are composites of quarks. Whether this
chain of ascendency ever terminates remains a quite inspirational mystery. In any case, our
catalogue of fundamental constituents is exhaustive enough for most practical applications.

Second comes the characterization of the basic interactions between these constituents. The
list of fundamental forces currently stands at four: the gravitational force on the one hand, and
the electromagnetic, weak and strong nuclear forces on the other. Again here the classification
into four forces is not set in stone. Electromagnetic and weak nuclear forces are unified in
electroweak theory; grand unified theory then attempts to also incorporate the strong nuclear
force. Whether there are indeed only four forces, and whether these are in the end manifestations
of a single all-encompassing force again remains a mystery. Nonetheless, as for fundamental
constituents, we can be quite satisfied with our catalogue of fundamental forces.

The third quest is more subtle, but naturally emerges as one tries to blend fundamental con-
stituents interacting with each other in larger and larger numbers. Put simply, one immediately
faces a wall of complexity when one tries to translate detailed information about constituents and
fundamental interactions into firm predictions for physical behaviour of many-body systems. The
minimal illustration of this is obtained by considering (Newtonian) gravitationally-interacting
spherically-symmetric bodies. The two-body case (Kepler problem) can be solved exactly, allow-
ing to predict positions and velocities at any time (past or future) from a set of initial conditions.
Strikingly, this feature of exact solvability is immediately lost (except for fine-tuned initial con-
ditions) when the problem is complicated by the addition of more bodies. As shown by Bruns
and Poincaré, there cannot be an analytical solution to the 3-body problem for arbitrary initial
conditions. Motion is then not periodic in general, but rather chaotic. This is also the case
for the n-body problem. If we cannot even solve such an already-oversimplified problem, what
hope can we possibly have of predicting anything about systems of very (thermodynamically!)
large numbers of different types of particles interacting with each other with all available forces?
Can one understand barred spiral galaxies from Newtonian gravity? Is the crystal structure of
piperidinium copper bromide (C5H;2N)2CuBry somehow hidden in the Coulomb force?

Facing the cliff face of the many-body problem, the fatalistic researcher will either close
up shop or refocus towards simply pushing the first two above-mentioned quests further. A
more adventurous thinker will however view this third quest, which one usually refers to as the
physics of emergence, as carrying more potential for astounding discoveries, and welcome every
opportunity to ‘add a bit more junk’ as an additional chance of generating something unexpected.
This contrast was perhaps best expressed by Primo Levi in his book ‘Il sistema periodico’, when
he describes how the element zinc reacts differently to acid as a function of its level of purity:

Intro-1
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‘... Uelogio della purezza, che protegge dal male come un usbergo; l’elogio dell’impurezza, che da
adito ai mutamenti, cioe alla vita. Scartai la prima, disgustosamente moralistica, e mi attardai a
considerare la seconda, che mi era pit congeniale. E| This more congenial path is the one followed
by the modern many-body physicist, and is the one which I will do my best to expose in this
book.

In fact, one can easily get carried away with optimism when thinking about the current state
of physics. After all, looking at the world around us with the eyeslégog kg&xﬁggggﬁlgl_%physicisﬂ
one can sympathise with the statement from Laughlin and Pines[I] that almost every thing we
are confronted with in daily life can be explained by simple nonrelativistic quantum mechanics

based on the Schrédinger equation
iy ) = HID), g

where £ is Planck’s constant. The Hamiltonian here describes N, electrons of fundamental charge
—e and mass m, together with N; atomic nuclei of mass M, and charge Z,e (a = 1,..., N;),
interacting following Coulomb’s law:

H*iihzvui v ii lat +§: - +§: ZoZ5e_(3) [aqme-mnsE]
- J om 7 — 2M, i« I7; — Ra| j<k|7“j_7“k‘ a<5‘Ra—RB‘ ==

in which r; is the spatial coordinate of electron j and R, that of ion . Missing from this theory
are of course any interactions associated to the nuclear forces, and gravity. We should also
include spin, to be able to handle problems in magnetism. Coupling to light is easily included;
we can even build in special relativity, we’d then simply call this whole edifice QED (quantum
electrodynamics). RSE

Without even going that far, reasonings based on ﬁ%ﬂ explanation of the sizes of
atoms, the strength and scale of chemical bonds, basic properties of bulk matter such as sound
waves, why certain materials conduct electricity while others don’t, why some are transparent to
light of certain frequencies and others not. The accuracy to which this ‘Theory of Everything’
thus describes basic physical properties and processes is simply astounding, and we can easily
get ahead of ourselves and repeat the common mantra that it captures all the essential features
for explaining essentially all that we see around us.

There exist however more complicated phenomena which we cannot reasonably expect to
explain from our Theory of Everything. Basic life forms, the human brain, the nonsense of stock
market fluctuations, even some very-typical-looking ceramics which happen to superconduct at . MBP: NRSE

elﬁﬂﬁ’:‘ﬂ%@égh temperature cannot be modelled in any practically feasible way starting from &7
. Besides our model itself being at best only distantly related to what we want to describe, the

rules themselves are subject to being questioned. For example, many phenomena observed at

the ‘human’ scale can be much better described starting from classical mechanics; it would then

be at least less than economical, perhaps at most even nonsensical, to start from a microscopic

quantum theory. Citing Laughlin and Pines again, ‘So the triumph of the reductionism of the

Greeks is a pyrrhic victory: We have succeeded in reducing all of ordinary physical behavior to a

simple, correct Theory of Everything only to discover that it has revealed exactly nothing about

many things of great importance.’

L¢.. the praise of purity, which protects from evil like a coat of mail; the praise of impurity, which gives rise to
changes, in other words to life. I discarded the first, disgustingly moralistic, and I lingered to consider the second,
which I found more congenial.’

2To qualify for this, you have to master classical and quantum mechanics, thermodynamics and statistical
physics, electromagnetism and all the necessary mathematics (Fourier transforms, calculus, linear algebra, perhaps
a bit of complex analysis), and ideally be at ease with a few more subsidiary subjects such as condensed matter
physics...
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In order to make %IQ%gs.%NR%]&e has to make some sacrifices. First of all, perhaps not all

degrees of freedom in are relevant to a specific problem one might think about. For example,
if we are interested in the motion of electrons in a conductor, we might reasonably assume that
the nuclei are simply sitting at fixed positions and ignore their motion. Writing an effective
model involving this reduced number of degrees of freedom then provides a more economical
starting point.

Once a reasonable effective model has been written down, explicit calculations can be at-
tempted. In most cases however, our solution capabilities fall far short of our desires. We might
like to know what the frequency-dependent conductivity of the two-dimensional Hubbard model
is as a function of interaction strength, filling and temperature, but getting there is no easy
task. The dream of finding exact solutions to strongly-correlated many-body systems has only
really been realized in the world of one-dimensional quantum (or equivalently, two-dimensional
classical) physics, but these firmly-grounded results, though extremely instructive, do not extend
to higher dimensions.

Over the last few decades, physicists have thus built extensive frameworks to handle such
unsolvable problems as best as possible. In a first instance, perturbation theory is the natural
starting point. The strategy is simple: from an exactly-solved simple base system (most com-
monly: a free (noninteracting) theory, all of whose correlation functions are readily computable),
try to approach the desired system by systematically computing the effects of the perturbations
required to bring you from the base system to the desired one. Clever tricks (for example: partial
resummations to infinite oxder) have been devised to do this in a meaningful way, and this will
be the subject of Chapterg

Another very important general approach has emerged, known as mean-field theory. Finding
it’s origins in the idea of the ‘molecular field’ of Pierre Weiss, modern-day mean-field theory is
possibly the most commonly-applied tool to deal with an interacting many-body problem. The
idea is to look for a replacement effective ‘mean-field’ model in which interactions are present,
but not higher correlations. Whether such an effective mean-field theory es sense for a given
situation depends on many details, which shall be discussed in Chapter Mean-field theory
has been pushed and extended today to something one perhaps better labels as effective field
theory; here, one can altogether do without a microscopic starting point, and guide oneself with
simple symmetry considerations to write down a ‘top-down’ effective model for a given class of
problems. The fundamental concept of importance here is that of universality, namely that the
details of the microscopic starting point possess a certain degree of flexibility, by which we mean
that the resulting low-energy physics is invariant under such microscopic modifications. This
will also be discussed in Chapterg

Being able to handle a given theory must ultimately mean that we are in a position to
answer questions relevant to experiments. There exist a large number of experimental probes
for condensed-matter systems, and all require specific treatments. On the other hand, one can
theoretically handle most cases formally as specializations a general framework, response
theory, which we will expose in its simplest form in Chapter %

The purpose of this book is to give its reader a basic, systematically organized grounding in the
language and techniques of many-body physics, in both its classical and quantum manifestations,
enabling not only the formulation of a proper underlying theory, but also the treatment of it up
to the point where useful physical predictions can be obtained.
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Chapter 1

Collective phenomena

Interacting many-body systems come in very many shapes and forms, and to tell you the truth,
there are few which we understand to any satisfying degree. For some however, we can claim to
know more or less everything. It is natural to use the simplest of these as ‘stepping stones’ towards
more elaborate cases; the purpose of this chapter is to introduce a prototypical simple model of
coupled oscillators, and to hereby rehearse most of the basic physics needed to understand later
chapters.

1.1 The classical harmonic chain

Starting from our theory of everything @,‘_Ml%l)tﬂu—NSRschncentrate on the core ions only, assuming
that electrons have no dynamics and remain bound to their respective ion. Furthermore, we shall
treat the atom’s dynamics classically. We will also assume the simplest possible geometry, which
is a one-dimensional chain. Without specifying the precise details, we expect the interatomic
potentia]E] to have some minimum at a characteristic distance a which naturally defines the lattice
spacing of our chain.

If we were to remove all fluctuations by going to zero temperature, the system would be
frozen in a configuration in which all the atoms sit precisely at the required lattice spacing,
R; = R; = Ia (here, we label positions with an integer index I, putting the origin of coordinates
on the atom with label 0). Deviations from this configuration, induced by perturbations or
thermal fluctuations, carry a price in kinetic and potential energy. The kinetic energy is still
given by the free-particle term with momentum Pj. Since the interatomic potential is assumed
to have a minimum at distance a, the energy is approximately quadratic in the small deviations
from equilibrium. We can thus consider the reduced low-energy effective Hamiltonian (giving
our atoms a mass m from now on)

Pk )
H= L+ 2 (Riy1—Rr—a)?). 1.1
> (5 + 5 (R~ i - ) (8
As is immediately clear, this Hamiltonian is effectively that of N point-like particles connected
by springs obeying Hooke’s law, whose parameter kg is taken as given (it’s simply the second
derivative of the effective interatomic potential, but the details of this don’t need to be specified).

LA good example being a Lennard-Jones potential.

1-1

CMFT(1.2)
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1.1.1 Lagrangian formulation

T(1.2)
From 1'1‘5 ], one could proceed directly and solve the equations of motion exactly. We could
consider doing this in the Lagrangian formulation, in which case we consider

N
7 ﬁ‘Q_E _ N2
L=T U—§<2R, 5 (Rre1 — Rr —a) > (1.2)

Let us however push forward the idea of simplifying our problem as much as possible, while
keeping the interesting physics on board. For large N, we can expect boundary effects to become
negligible, at least as far as the bulk physical properties are concerned. We're free to impose e.g.
the topology of a circle, using periodic boundary conditions Ry4+1 = R1. We shall also consider
the low-energy sector, assuming that only small deviations |R;(t) — R;| < a are present. Defining
Ri(t) = Ry + ¢1(t) with ¢n11(t) = ¢1(¢), the Lagrangian becomes

N
L= Z <r2n¢§ - %(¢I+1 - ¢1)2> . (1.3)
=1

We can also use the fact that we're not interested in phenomena at the atomic scale, but only
in macroscopic low-energy phenomena, for example the chain’s bulk specific heat. This leads us
to take a continuum limit, namely to ignore discreteness of the atomic spacing and describe the
system by effective, continuous degrees of freedom. Such a description makes sense if relative
fluctuations are weak, in other words if the displacement of a given atom is more or less equal to
the displacement of its neighbours. We thus define a continuous function ¢(z), which describes
the displacement of the atom at position z. The correspondence can be written as

¢I — a1/2¢(x)|w21a7
Gre1— ¢r — a1/2(¢(x +a) = ¢(2))|e=1a = a3/26w¢($)|lea + (1.4)

in which -+ denotes higher derivative terms which we drop for the moment (they lead to an-
harmonicities). Note that with this convention, the function ¢ has dimensionality [¢(z,t)] =

[length]'/2. Using the identity
N 1 L
Z(...)%a/o dz(...) (1.5)
I=1

with L = Na, we can now write our Lagrangian in the continuum limit,

ksa?
2

L

L is the Lagrangian density with dimensionality [energy]/[length].
Finally, the classical action of our effective low-energy theory is given by

st = [ariel= [ar [ * 42L(6,0,0.9). (1.7)

We have gone from an N-point particle description to one involving continuous degrees of freedom
represented by a classical field. Its dynamics are specified by functionals L and S which are
continuum versions of the Lagrangian and action.

CMFT(1.3)

CMFT(1.3a)

CMFT(1.4)

CMFT(1.5)
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Fields and functionals
A field is a mapping

¢o:M—T, z = ¢(2), (1.8)

from a “base manifold” M to a “target” or “field manifold” T. In the current example,
M =10,L] x [0,{] CR? and T = R.

A functional is a mapping from a field into real numbers,
S:¢p— S[d] eR (1.9)

(note: argument of a functional is conventionally written in square brackets).

To get the actual behaviour of model as a function of time, we need equations of motion.
What do they look like here for our continuous classical field? How to obtain them? The answer
is a simple extension of the principles used in the classical mechanics of single particles, most
beautifully expressed in Hamilton’s extremum principleﬂ which we here apply to an infinite
number of degrees of freedom.

The idea is thus to require that the action of our system be stationary. For the field ¢(z,t),
we thus define a variation (which by convention is defined to vanish at the system’s spatial

boundaries)
8(2,0) = bl 1) + (o, ) (110
and require stationarity of the action explicitly:

2 ksa?
2

sto+en)— slo) = [[at [ an [5G+ i - B4 0.6+ conn?] - st
= [ [ awtmii— katoo0m) + 0

L L
= —e/dt/ dz(m¢ — kead2¢)n + e/ dzmaen|, — e/dtksa28x¢n|£:0 + O(€?)
0 0

(1.11)
so stationarity (namely, asking that the first-order term in the variation vanishes) yields
1 .
iy £ (S[o+ en] ~ S[o]) = [ dimé ~ ha*@2)y =0 (1.12)
e—

since by definition we take the variation to vanish at the boundaries of space and time. Since this
must hold true for any smooth 7 satisfying these boundary conditions, we get a wave equation

for the field:
(m0} — ksa®02)(x,t) =0 (1.13)
whose solutions have the general form
o(x,t) = ¢y (x — vt) + o_(x + vt), v=ayks/m (1.14)

and ¢4 are arbitrary smooth functions. The elementary excitations are thus lattice vibra-
tions propagating as sound waves with constant velocity v. The important point here is that

2See %5 Eor a reminder of Hamiltonian and Lagrangian formulations of the classical mechanics of single

particles.
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these collective excitations have little to do with the microscopic constituents themselves,
but emerge in great generality in any system with similar microscopics containing kinetic and
interaction energies. For example, in an interacting electron gas, collective excitations known
as plasmon modes involving large numbers of electrons appear and determine much of the low-
energy physics. Experience shows that merely identifying which are the relevant excitations in a
given system is one of the crucial steps in the solution of a condensed matter problem.

Functional analysis
Let’s consider a simple one-dimensional base manifold and a given functional F'. This
functional is differentiable if

Ff +eg] = F[f] = ¢- DFy[g] + O(€”) (1.15)

where DFy[g| is a linear functional, € is a small parameter and g is an arbitrary function.
The differential is given by

DFylg] = /dmg?([gg(x). (1.16) ||
in which the functional differential is defined as
OF[f(x)] .. 1
o) Z}%E(F[f(x)-ﬁ-d(??—y)]—F[f(fﬂ)])- (1.17) |

This is best illustrated with simple examples. For the simple functional F[f] = [ dzf(z),
we have

SF[f) 1

5w lim g(/ dz(f(z) +ef(z — y)) — /da:f(:z:)) = /dxé(gc —y) =1 (1.18)

A slightly more complicated case is to consider the functional F,[f] (where z is a parameter)
defined as F;[f] = [ dyG(z,y)f(y). It’s functional differential is

P~ i ([ @G @) ) + by - 2] - [ G011

_ /dyG(x, )8(y — 2) = Gz, 2). (1.19)

Other things familiar from differential and integral calculus also find their parallels in func-
tional analysis. For example, the chain rule takes the form

OF[glf]] _ dFg] dg(y)[f]
3f(x) ‘/ W gly) = 5 ()

A functional can also be approximated by a functional Taylor expansion:

(1.20)

Fifl = F0+ [ der 00 o(an) g [ dends 5Flf)

5f(x1) mlf:of(xl)f(x2)+... (1.21)

What we have just done is an example of functional analysis (see Supporting block). It
is worth taking a moment and generalizing our reasoning to an (almost) arbitrary case. A
derivation of equations of motion is then obtained by applying the principle of least action to a

CMFT(1.14)

CHFT(1.15)

CMFT(1.15)
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generic field theory. Usually, field theory functionals are of the form
= / d™zL(¢",0,0") (1.22)
M

in which we assumed that the base manifold M is parametrized by an m-dimensional coordinate
vector x = {x,}. Usually, m = d + 1 with 2y a time-like coordinate.

Let us assume that the field manifold has dimensionality n, and denote our field coordinates
as ¢'. What makes things simple is that all info about the action S is contained in the function
L. We can repeat the simple variational steps above to this generic case:

S[é + 6] — /dm L(6+ €8, 0,6+ €0,8) — L(, D))

— m oL % oL i 2
f/Md x{awﬂ + gl |+ 06

oL oL - oLr .
= d™x - —0 | @' + / d" o e + O(e> 1.23
/, LW “66@1} ot T aR,gt T OE) (1.23)

Here, OM is the boundary of the base manifold M, and o, is the boundary integration element.
We assume that the variagj (Va¥i§hes on boundary of base manifold, 8|53 = 0. The functional
derivative is thus (using

05[] oL oL
. = — -0 : . 1.24
56i(x) ~ 06(a) " D0,0(x) 12y
1.16
The stationarity of the functional ( 1S thus equivalent to the set of functional equations
oL or _ 0, Vi (1.25)

5@ 00,0 (2))

which are known as the Euler-Lagrange equations for field theory.

Comment: for d = 0 and zg = t, these reduce to the E-L equation of a point particle in n-
dimensional space.

1.1.2 Hamiltonian formulation

Energy of sound waves ? Need Hamiltonian form, again generalizing from point particles to the
continuum.

For a point particle: conjugate momentum defined from Lagrangian as p = J; L.
. . T(1.3a)
For our ¢; variables in 1II \gj

SO

T = me;g (1.26)

H= me—f; Z( 5 (fre1 - ¢1)2). (1.27)

CMFT(1.16)

CMFT(1.17)
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In the continuum, let us define the canonical momentum conjugate to ¢ from the Lagrangian
density as

_ OL(¢,0:0,9)
m(z) = N (1.28)

The Hamiltonian density is then defined as usual,

H(,0up, ) = (1) — L6, 006, D)) j—is.m) (1.29)
with the full Hamiltonian being H = fOL dzH.
We have 7(z,t) = m¢(x,t) and

2 koa?

Hm@:/wk—+

(020)%). (1.30)

DN

m 2

For e.g. a right-moving excitation, ¢(x,t) = ¢4 (z — vt), we have w(x,t) = mop4(z — vt) =
—mudy ¢4 (z — vt) so Hm, ¢] = mv? [ dz(d,¢(z — vt))? = mv? [ dz(0,¢(x))? (by using periodic
boundary conditions) which is a positive definite time-independent expression.

Comment on symmetry The notion of symmetry is extremely important in classical and
quantum dynamics. Noether’s theorem finds its way into field theory (see Supplement at the end
of this Chapter). Here, let us simple make a few basic but fundamentally important observations.

For infinitely shallow excitation 0,¢+ — 0, the energy vanishes.

—symmetry: H invariant under uniform translation of all atoms, ¢; — ¢y + 6

Global translation does not affect internal energy. Real crystal: coordinates fixed, Ry = [a —
¢r = 0. Translational symmetry is spontaneously broken, the solid decides where it wants to

rest.

Remnant of this symmetry: infinite-wavelength (low-energy) deviations from ground state with
broken symmetry cost a vanishingly small amount of energy.

So: symmetry —low-energy excitations (further discussed in CMFT Chap. 6).

Some physics: specific heat of classical harmonic chain From statistical mechanics:
energy density

1 1

where 8 = 1/kgT is the inverse temperature and Z the (Boltzmann) partition function,

2= [ s

CMFT(1.9)

CMFT(1.10)

CMFT(1.11)
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where the phase space volume element is dI' = Hé\[:l dordmy.
(convention: from now on, kg = 1)
The specific heat ¢ = dru is the rate of change of energy with temperature.

Easily determined here: rescale integration variables, ¢; — B~Y2X;, m7; — B~Y/2Y7, giving
BH(¢,7) — H(X,Y) indep of T (since H is quadratic). Integration measure: dI' — 3~VdI”, so

w= _%aﬁ m(3NK) = pT (1.33)

where p = N/L is the number density of atoms, and we have used that K = fdl'"e_H(X7y) is
independent of T

—temperature-independent specific heat, ¢ = p. Note that it is independent of the mate-
rial constants m, ks (understandable from equipartition: N degrees of freedom, so extensive
energy scales as U = NkpgT). Strikingly, this temperature dependence of the specific heat is not
what is observed in many materials... As we will see, this points to quantum effects as dictating
the low-temperature physical properties.

1.2 The quantum chain

Generally, in CM, low-energy phenomena with large 7" dependence —quantum mechanism.

How to quantize 7 Classically: momentum 7(z) and coordinate ¢(z) are conjugate vari-
ables, {m(x), p(z')} = é(x—x') (where {, } is the Poisson bracket, and § fn arises as the continuum
generalization of discrete PB {Pr, Ry} = 011/).

Quantization: promote ¢(z) and 7(z) to operators, ¢ — ¢, 7 — 7 and generalize CCR [Ry, Pr/] =
ih&]]/ to

(3(a), 7)) = ihS(z ) (134
Operator-valued function é and 7 are referred to as quantum fields

Classical Hamiltonian density becomes quantum operator:

kea?

S (0u0) (139

This is not a solution yet, only a formulation in terms of field theory. We first solve, then
discuss how we did it.

U 1
H(QS,’]T):%WQ—F

Fourier transform of fields:

{ P E\/lz/OLdmeﬂFikx{ igg 7{ igg E\%Zeim{ o (1.36)
k

0y

where )", sums over all quantized momenta k = 2rm/L, m € Z.
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NB: the real classical field ¢(x) quantizes to a Hermitian quantum field q/A)(a:), implying ¢, = éik
(same for 7). CCR become

[fr, 7opr] = ik (1.37)

Derivation of the Hamiltonian:

L L
[ w67 =S (kb)) [ dee 0 = ST RGG = SRIGE (138)
0 0 k k

kK’

—i(k-&-k/)x

L . .
where we have used % fo dze = 0p4k’,0- The Hamiltonian becomes

A 1 mw? . -
H = — M TT— —k _ 1.
zk: {Qm'ﬂ'k'ﬂ' Bt Okd k] (1.39)
with wi, = v|k| and v = a\/ks/m is the classical sound wave velocity.

:Phys
—Hamiltonian is a superposition of independent harmonic oscillators (see @E}La revision)
for the collective vibration modes.

1.2.1 Quasi-particle interpretation of the quantum chain

Ladder operators:

=4/ (¢ — i k) (1.40)

with generalized CCR
[dk,du = Okk, lak, ar] = [deL] = 0. (1.41)

The Hamiltonian becomes R
H=>"wy(afar +1/2). (1.42)
k

Here, wy — 0 as k — 0. Excitations with this property are said to be massless.

Excited state of system: indexed by set {ny} = (n1,n2,...) of quasi-particles with energy wy.
Identified with phonon modes of solid.

Exercise: do CMFT 1.8.3, and get the low-temperature specific heat for a solid.

CMFT(1.28)

CMFT(1.29)

CMFT(1.32)

CMFT(1.33)

CMFT(1.34)
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CMFT problem 1.8.3: Phonon specific heat

For the one-dimensional chain: eigenstates of system:

| Hnm>, Ny = #phonons with k = k,,, = 27m/L. (1.43)
Total energy:
B,y =Y Wiy (0 +1/2), wi, = vlk|. (1.44)
Partition function:
sA BE S oo (i t1/2) e~ P/
Z = T‘re = {Z} e {nm} = g nzz:oe m\Ttm = g m (1.45)
S0 w
mz=-% {5% +In(1— e*ﬁwm)} . (1.46)

The mean energy density is thus

W

1 1 k
U= —Zag InZ = 7 % [? —i—wknb(wk)} (1.47)

where n,(w) = ﬁ is the Bose-Einstein distribution function. Writing this as an integral using

— £ [dk . .
—7/dk”| | / Bﬂc" =)+ B2C, (1.48)

by scaling k — k/8. C12 are temperature-independent. We thus find
ey =0ruxT (1.49)

If T is much larger than the highest frequency phonon mode available, we can recover the clas-
sical result ¢, = cst by expanding e#UIFl — 1 ~ Bu|k|.

For a d-dimensional solid: if the atoms can also move in d dimensions, then the displacements
and conjugate momenta become vectors. The interaction term is

ks

d
5O (f11e — 1) (1.50)
i=1

where e; are unit vectors. In discrete variables, the Hamiltonian is

d

72 s
i35S e o] i
I

i=1

and in the continuum limit,

= /ddxzd: ri(x)rz L (vi&bf] (1.52)
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Fourier transform: operator commutation relations become

(i Fjhr] = iP5 6 e (1.53)

a =4[5 (&k + m’wkfrk) (1.54)

Hamiltonian in terms of ladder operators:

Ladder operators:

H= ZZwk al i +1/2) (1.55)

k =1

where wx = a = vlk| and the momenta are quantized according to k = L m with

m=(my,..,m ) E1gen5tates and their energies are given by
| H Hni,m>, E{m,m} = Z Zwkm (ni,m + 1/2) (156)
i m i m

Partition function: X
Z= Tre P =T remimtt/? (1.57)

SO

mZ=— ZZ[ = 4 In(l = e )| o - (;ﬁ)dd/ddk [[3%—1—111(1—6’5“"‘)

(1.58)
and therefore the free energy per unit site is
1 dk [wi Wk _

with ug T independent, and

d’k UFd|k| —d—1 d%k UFd|k| i1
- B —1 = 1.
Uy / (2m)d eBerc — 1 B / (2m)d e — 1 B o (1.60)

with @y T independent. Therefore, the specific heat goes like

cy = Opu o< T (1.61)
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CMFT problem 1.8.4: Van der Waals force

~9 ~2 2
P D mwi, .o . .
H = ﬁ-pﬁ—yTo(x%—i—x%)—i—melxg (1'62)

2
where the last term represents the dipole-dipole interaction, and K(r) = -2 encapsulates the

details of the interaction.
Spectrum: interaction can be written

A AT A P X1 _ E w(z] K
U=2z"Az, $<x2>’ AQ(K w2 ) (1.63)
New eigenvalues: wy = (w? + K)'/2. Ground state:
L wo wy 1 5 5 B K?
E0—7+7—5(\/OJO—K+\/UJO+K)—UJO—%+... (164)
so the reduction in energy is by a factor V = %.
0
Classical polarizability: V = q2§j;;%,g;a2 = q2§;06a2 where o = 7;5)2 But (¢?) = 2, and with a
0

factor of 3 since we're in three dimensions, we get

3wpa?

V =
46

(1.65)
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Supplement: Maxwell’s equations as a variational principle

For classical electrodynamics: inhomogeneous Maxwell equations:
V-E =p, VxB-0E=]j (1.66)

(simplicity: vacuum theory, so E = D and B = H). We've set ¢ = 1. These can be obtained
from a variational principle, in which the homogeneous equations:

VxE+8B=0, V-B=0 (1.67)

are regarded as ab initio constraints on the ’degrees of freedom’ E, B.
Need (1) a field formulated in terms of suitable ’coordinates’, and (2) its action.

Natural "coordinates’> EM 4-potential A, = (¢, —A). A is unconstrained and gives fields E, B
through E = —V¢ — 0;A, B = V x A. These are 'overly free’ since gauge transformations
A, — A, + 0,1 leave fields invariant.

Better notation: use

0 E, FEy Ej
~E, 0 —-By B,
7E2 B3 0 7B1
-Fy -B, By 0

F={Fu} = (1.68)

so now Fy, = 0,A, — 0, A, where z, = (t,—x) and 9, = (0, V).

Finding the action: could postulate an action that reproduces Maxwell’s equation. More el-
egant strategy: find a symmetry that defines structure of the action. Here: Lorentz invariance.

Lorentz invariance: a linear transformation 7}, is a Lorentz transformation X, — X /: =T.X,
if it leaves the 4-metric g = diag(1,—1,—1,—1) invariant. Notation: X* = ¢g"”X,, so Lorentz
invariance: X*X,, = X" X/ .

Use symmetry criterion to conjecture form of action from 3 assumptions (all indep of Maxwell):

action should be invariant under (a) Lorentz and (b) gauge transformations, and (c) it should
be simple (local, ...). Most elementary choice:

SL4]::j[d4x@quuﬁw”—%c2Aﬂj“) (1.69)

with d*z = I1,dzy, j. = (p,—J) and c1,2 are constants to be determined. This is the only
structure compatible with the requirements, to quadratic order in A.

Variational principle:

oL oL
— 0Oy =0, =0,..,3. 1.7
o4, Yo,y =0 r=0d (1.70)
with § = [d*zL. In equations of motion: 0a,L = caj*, 99,4,L = —4ciF*. This gives

4¢10"F,, = c2j,. We thus get Maxwell for ¢;/ca = 1/4, and the correct energy density for
1 =—1/4, so

1
L(Aw O Ap) = = Fu B + Ay (1.71)

CMFT(1.22)

CMFT(1.23)

CMFT(1.24)
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is the Lagrangian of the electromagnetic field.

Remarkable achievement: by invoking only symmetry, we’ve found the structure of Maxwell’s
equation. Relativistic invariance is in-built. We've also shown that these are the only equations
of motion linear in current-density which are consistent with this invariance.

Summary: two approaches for getting a field theory:

e Microscopic analysis: starting from a microscopic theory, project onto important degrees of
freedom for low-energy dynamics.

Advantages: rigorous, fixes all constants.

Disadvantages: time-consuming, often not viable for complex systems.

e Symmetry method: infer effective theory on basis of fundamental symmetries only.
Advantages: fast, elegant.
Disadvantages: less explicit than microscopic approach, does not fix coefficients.
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Supplement: Noether’s theorem in field theory
Basic paradigm: continuous symmetry —conservation law.

Ex.: rotational symetry <>conservation of angular momentum

Tool to identify conservation laws from symmetries: Noether’s theorem.

Symmetry transformation: two pieces of data.

First, a mapping M — M,z — 2/(x) (automorphism of base manifold).

Second: transformation of field configurations, (¢ : M — T) + (¢' : M — T) defining trans-
formed values ¢'(z') = F[{¢(z)}] in terms of the “old” field ¢.

Example: translations in space-time. 2’ = x 4+ a, a € R™, ¢/(2') = ¢(z). Translation in-
variant system iff S[¢p] = S[¢'].

Other example: rotational symmetry: 2’ = Rz with R € O(m) a rotation in Euclidean
space-time. Here, ¢'(2') = ¢(x) would be unphysical. Properly rotated field configuration:

¢'(2') = Ro ().

My own derivation... Any finite symmetry transformation can be obtained from a series of
infinitesimal transformations, which we consider. We have already seen what the variation of the
action is under a change of the field. Using the notation

¢'(z) > ¢ (z) = ¢ (x) + 6¢' (), (1.72)

we had (provided the field obeyed the Euler-Lagrange equation)

oL ;
808 = d" o 5ot 1.73
[ oM H aaﬂqbl ( )
Consider now changing the coordinates according to
T, = x, = x, + 0T, (1.74)

The change in the action coming from such a coordinate change occurs at the boundary, i.e.

8,9 = /dmx'y — /dmx/_: = /dmx[(l + 0,02")(L + 0, Lox") — L]

- / 400, (L6") + 00 = [ d™ o, L0 + O(5) (1.75)
OM

The total variation of the action under both coordinate and field change is thus

55 = / o, | 25 s 1 coan] . (1.76)
oM 90,9
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Derivation in CMFT notation

In the notation of CMFT, the transformation is written as

Ox
Ty — ), =z, + 8—@’;|wzowa(x),
¢'(x) = ¢ (a') = ¢'(2) + wa(2) Ful9] (1.77)
where {w,} is a set of par bgr fmcti ¢ghapgeterizing the transformation. We now calculate
the change in the action %ﬁ‘m %7
AS = / Ao’ L(¢" (1), 0y ¢ (') — / A"z L(¢'(x), By, ¢ () (1.78)
From %(’1.42)
oz, 0 oz
“o_ 9 7
OV w T Ox” (wa awa) (179)
and using
oz 0 Oz
By 9 . 9Tu 2
Gl = 1+ g wag ) +0?) (1.80)

we get 0, = 52:)
AS = / 07 [(1+ Oy (oD, 7V L(& + Flo, (8% — 8, (wadin, 2))0y (&8 + Fliwa)
—L(¢'(x),0,¢"(x))]  (1.81)

Going further, we have

882 [ a0, ge )t + 5o Flon + s |0(Fiw) — Oulan G|

[ oc oL Dz dx” oL ;
= [ a7 |Ggs gy Pl + Ol G NE a0l 5 0,60+

oL . oz oL i
O [awmi) Fotda = e g 5,90 7 ” (1.82)
But we have
o . . or A oL . ar |
o L=E0,6+—% 506 =(0,—5 19,6 + —2=_8.0,6
96 % T 58,50 u0? = ugrg 57009 g gy Oude®
oL |
o, | -5 g 1.83
Z [ammo d’} (1.83)

where we have made use of the Euler-Lagrange equation for the field. We thus find

" gat 9L o 02" L N _ [ om
AS = /d .’L'au |:(Ua (ﬁauja - W@y@ﬁ awa + 6(3M¢2)Fa>:| = /d "Eju(f)auwa. (184)
S

To check the correspondent of this to equation , note that the notation correspondence
between the ’easy’ and CMFT field and coordinate parametrization is
o0z,
02, = 52 o (w),
64! (2) = ¢ (x) = ¢'(x) = ¢"(a) — ¢'(2) + ¢ " (a) — ¢" (&)
= wa(@)F; — gz‘; lw=owa (@) gfu +0(w?) (1.85)
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S S_CMFT(1.43)
Putting this back into 6.5 (%above yields back 1Il %i;

Back to CMFT notation This means that we can rewrite the variation of the action as

AS = — dm_la“wa(x)jZ(x) (1.86)
oM
where or o or
o _ 9%~ i iy 0L
jp, - <8(6H¢1)8V¢ ﬁéll«V) 8&1,1 |w:0 8(8H¢Z)Fa (187)

where the term in first parentheses is known as the energy-momentum tensor 7),,.

If the action is invariant under an arbitrary set of functions w,, we have that

/ dmlghge = 0 (1.88)
oM

or, by using the multidimensional version of Gauss’s theorem,

/ d"zd"j, =0 (1.89)
M
Since we really can choose M as we wish, we therefore obtain a conserved current jy !

Thus: Noether’s theorem: a continuous symmetry entails a classically conserved
current.

In Euclidean (1 + d)-dimensional space-time, we can therefore define a conserved charge
Q" = / d*xji,
00" = 00" = [ dlatnjs - [ dtaoige = [ g =0 (1.90)
oD

where we have used Gauss’s theorem again and assumed that the current density vanishes at
spatial infinity.

Example: translational invariance Take
T, =, + ay, &' (2") = ¢(x). (1.91)

The Noether current is then

oL i
TH(z) = W&,qﬁ — LoMv. (1.92)

with conserved charges

Y oL i

CMFT(1.43)



Chapter 2

The operator formalism

Experience shows that the solution to a physical problem often becomes transparent when one
uses the correct language to formulate it. This chapter introduces an operator-based formalism
for many-body quantum systems often referred to as ‘second quantizationﬂ The idea is that
instead of working with many-body wavefunctions, we work directly with operators that ‘create’
them on a specified reference state (the ‘vacuum’).

2.1 Many-body wavefunctions

Let’s imagine that we have some quantum problem associated to a certain Hamiltonian H (for
example, a particle in a box). By solving the Schrédinger equation for a single particle, one gets
a set of normalized wavefunctions {|v;)} (with real-space representation ;(x) = (z|;)), such
that H|¢;) = e;]1;). For purposes of discussion, we'll assume that the one-body Hilbert space
has a basis of states |¢) which are indexed by an integer ¢ = 1,2, ... (not necessarily eigenstates;
they are just assumed to form a basis).

If we now consider putting two identical particles in such a system, according to the postulates
of quantum mechanics (more precisely: Pauli’s principle), we must symmetrize or antisymmetrize
the wavefunction depending on whether the particles are bosons or fermions. The normalized
real-space two-particle wavefunctions of fermions or bosons in states 41,45 are then respectively
given by (up to an arbitrary overall phase)

(21, w2)in,i2) = \% ((1ir)(z2liz) — (@1liz)(z2lir))

Vp(21, 22)i1,12) = \% ((w1ir)(z2liz) + (w1iz)(z2]in)) - (2.1)

Omitting the spatial coordinates by working directly in Dirac bracket notation gives the simpler
form 1

i1, i2) F(p) = 7 (i) @ liz) + Cliz) @ [i1)) (2.2)
with ¢ = —1 for fermions and ¢ = 1 for bosons. Note that the wavefunctions obey the correct
symmetries under exchange of particle coordinates:

U (2o, 21]i1,42) = Wp(21, T2li1, i2), U (w2, 21]i1,12) = —Vr(w1, 22li1, i2), (2.3)

IFrankly, a stupid name for a good idea. There is no ‘second’ quantization, just the usual one. Here, we’ll use
the more descriptive term ‘operatorial quantization’.

2-1
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but that in these conventions, this is also true upon exchange of the state indices:
\I/B($1,$2|i2,i1) :\I’B(Z‘hxg‘il,ig), \I/F(.%‘l,xgﬁg,il) Z—\I/F(J?l,l‘ﬂil,ig). (24)

In the general N-body case, assuming that states i1, ...,iny are occupied, the wavefunction is
written as

1
[i1,02, -y iN) = mrmse——775 O TP ip,) @ lip,) ® .. @ lipy) (2.5)
[N! Hj:o nj!]1/2 ; 1 2 N

with n; the number of particles in state j (for fermions, this is restricted to 0 or 1). The summa-
tion runs over the N! permutations of the set of ‘occupied’ quantum numbers {41, ...,ix} (note
that in the bosonic case, there can be multiple entries of the same level), and sgnP is the sign of
the permutation.

For the specific case of fermions, this permutation sum has the structure of a determinant,
which is known as the Slater determinant.

To fix conventions completely, we have to rely on the explicit ordering of the numbers iy, ..., iy
and for example agree that the first term in the sum (with coefficient 4-1) is the one corresponding
to the indices i, begin given in increasing order. There is however no ‘physics’ in this convention
(it’s just a convention!).

At first sight, one expects N-body quantum mechanics to take place in the simple tensor product
space

HYN=HRH®..0H. (2.6)
—_—— —
N times

The symmetrization postulate of quantum mechanics however requires our wavefunctions to form
a representation of the permutation group SV: HN — HN  |i1) ® ... @ |in) = |ip,) ® ... ® |ipy)-
SN has two simple one-dimensional irreducible representations: the symmetric P(z)) = 1, and
the antisymmetric P(¢)) = sgn (¥)y. Quantum mechanics postulates that bosons/fermions
transform respectively according to the identity/alternating representationﬂ Our states thus
really belong to a subset FV C H" having the right symmetry: this is known as the physical
Hilbert space. Obtaining a basis of FV is straightforwardly done by applying symmetriza-
tion/antisymmetrization operators, P* =3, P or P* =3, sgn (P)P, to a basis of H".

T(2.1)
There are many practical reasons why the form %_oﬁour many-body wavefunction is not
convenient:

e Computing the overlap of two wavefunctions requires handling (N!)? different products.

e This representation is for fixed particle number N. In applications however, we want to
let N change (thinking of averaging over a grand-canonical ensemble for example, or of physical
processes where particles are added /removed froT 2a1§ystem).

Thinking about the content of equation (%T.sevident form the left-hand side, the infor-
mation required to specify it is simply the set {i1,...,ix}. This set however can be rewritten
in terms of the occupation numbers of each available state. If we denote by n; the number of

2In two dimensions, other possibilities exist, since one must then look at representations of the braid group.
Particles with other statistics (neither bosonic nor fermionic) then exist, which are known as anyons.

CMFT(2.1)
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‘times’ state ¢ appears, we have the equivalence
{i1,...in} > {n1,ng,..} with > n; = N. (2.7)
J
This leads us to consider general states in the occupation number representation,
[n1,m2,...), n; = 0,1 (fermions) or n; =0,1,2,... (bosons) (2.8)
without constraint on > ;nj. These states form a basis of the Fock space
F = oo FY (2.9)

in the sense that any wavefunction of any (conbination of different) numbers of particles can be
written as the linear combination

Z Cnyms,...|M1,N2,...), cn €C. (2.10)

n1,M2,...

One special object in Fock space is the state associated to the physical Hilbert space with zero
particles F°. This space is a dimension-one Hilbert space, and its basis element, known as the
vacuum state, is traditionally denoted by |0). The Fock space is the principal arena of quantum
many-body theory, and the vacuum state is the foundation on which it is built.

2.1.1 Creation and annihilation operators

Since a many-body wavefunction such as (%%%Hy defined by specifying the set of occupied
one-body states, we can imagine that it is built up from adding particles in the relevant states
one at a time, starting from the vacuum state. To implement this idea, we thus define a set of
operators actlng in Fock space in the following way. For every i = 1,2, ..., we define ‘raising’
operators a : F — F through the relation

allng, ..ong, ..y = (ng +1)Y2¢%n

a1, (2.11)

with s; = Z;;ll n; being a (convention-defined) statistical sign. The central idea is that starting

from the vacuum state, we are able to generate every basis state of F by repeated applications
T

of a;:

Iny, ng,..) = HW )™ |0) (2.12)

(in this equation, with our convention %(?_'t'shle product is taken left to right for increasing i;
this is once again not ‘physical’, just conventional).

Without seeming to do much, we are actWhauhng our way of dealing Wlth wavefunc-
tions. The complicated permutation sum in 1s generated automatically by the a operators,
which are called creation operators. Instead of viewing our wavefunctions as a very compli-
cated (anti)symmetrized sum of basis vectors, we view them as a product of creation operators
on the vacuum.

CMFT(2.2)

CMFT(2.3)

CMFT(2.4)
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(2.3)
A crucial consequence of the defining operator commutation relations @T that the cre-
ation operators obey the relation (aga; - Ca}ai)ml,ng, ...y = 0. Since this in fact holds for all
basis vectors, we can promote this to the operator identity

[al,al]c =0, where [A, Bl = AB — (BA. (2.13)

i

Our creation operators thus obey (anti)commutation relations reflecting the statistics of the
quantum particles they represent.
To complete the SE %ééfg?rator& we need the adjoints of our creation operators. From

complex conjugate of . we get the matrix elements of the af operator:
(M1, e, Jal [0, ol ) = (] 4+ 1Y By (2.14)
S0 .
(sl agng, oymg, ) =nl/ CH Ongmy +Ont my 1o (2.15)

Since this holds for any bra, we thus have

ny, . mi— 1) (2.16)

so the a; are annihilation operators. Note in particular that the vacuum is annihilated by
any of the annihilation operators,

@i N1y ey My o) = n§/2¢3i

a;]0) = 0. (2.17)

Summarizing, the creation operators ‘hop’ us in Fock space from each fixed- N physical Hilbert
space to the N 4 1 one, af : FN — FN*1 whereas the annihilation operators bring us back
down, a : FN — FN-L

A simple calculation shows that the creation and annihilation operators obey the following mu-

tual relations:
[ai,a;]g = 0;j, [ai,aj]e =0, [al,a}k = 0. (2.18)

T(2.1
To summarize: instead of working with @m; its factorially large number of ter%

shall work with states constructed by ‘raising’ the vacuum with our creation operators,
All (anti)symmetrization requyj ks are then automatically taken care of by the canonical
(anti)commutation relations (%

Practicalities From now on: only use Greek letters A as label for single-particle states instead
of integers.

e Change of basis Resolution of identity: 1 = Y5 |[A)(A|. This means that IA) = Do IAV (AN
with |A) = a}|0) and [}) = al]0), so

ak =Y (ANl az=D (ANax. (2.19)
A A

Often: continuous sets of quantum numbers. Then, sums go into integrals. Example: Fourier
representation:

L
a = / do(klz)a(x),  a(z) =Y (alk)ar,  (klw) = (alk)* = * VI (2.20)

k
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2.1.2 Representation of physical operators

Our set of creation/annihilation operators is sufficient to allow us to navigate through the whole
Fock space. This means that an arbitrary operator in Fock space can be written as a combination
of creation/annihilation operators. The structure of a generic operator is sketched as follows:

O = (put particles back in)(operator matrix element)(remove particles involved). (2.21)

For fermions, we have to take care of the order in which these removing/putting back in opera-
tions are performed. A few examples are best to illustrate the general idea.

The simplest case to consider is that of one-body operators acting in F/: O, = Zf:/:l On,
with 0,, an ordinary single-particle operator acting on the n-th particle, e.g. kinetic energy

A2 ~ A
T =73, ¥~ or one-body potential V' =3 V(&,), or spin operator > S,.

n 2m>
Define the occupation number operator
ix = alax (2.22)

with fu\(a;)”|0> = n(a;)”|0>. Since 71y commutes with all af\,;éw we have x|, Nay,...) =
nA|[MAL, Ay, --.). Consider now for simplicity a one-body operator O, whose single-particle opera-
tors 0,, are diagonal in the basis |\), thatis 6 = >, 6|A;) (Ai| = >_, ox, [ Xi) (Ni] with oy, = (N[0 As).
Then,

(nh,,n\,. |O1na,  nay, ) = (nh,,n,, Zén|nAl,n>\2, )
n

= (n),,n),, | ZOM"M Maps Mgy o) = (N, 1, ] ZOAJALM
i i

NXy My, > (223)

Since this holds for any set of states, we get

O1 =) oxita= > (Ao[A)x. (2.24)
A

A

This can be written back in a general basis by using the transformation rule a; =3 M(u\)&a}:
and its h.c.:

O1 = > (AolNafar =Y Ao (N (Av)afa, =Y~ ox AN () (Alv)afa,

A Apv Apv
— S, = bl (SO Wi, = Stiliefe. 225
Apv pv A pv
Examples 1) Spin operator St _, = % with «,a’ two-component spin indices and o the

Pauli matrices

aw—<(1) é) gy—(? _0’) oz—<é _01>. (2.26)

The spin operator assumes the form

S=>)al,Saatra- (2.27)
A

eq:0F:0struct

CMFT(2.10)

CMFT(2.12)

CMFT(2.13)
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2) one-body Hamiltonian for free particle:

i— / dirat (x) [2"; + V(r)] a(r) (2.28)
with p = —ihd,.

3) The local density operator measuring particle density at certain point with coordinate
r:

p(r) = a'(r)a(r). (2.29)
4) The total occupation number operator is then N = [ d4ra’(r)a(r) for continuous quan-
tum numbers or N = o a;a A for discrete quantum numbers.

The next step is to consider two-body operators O, needed to describe interactions. Classical
case easy; quantum case complicated by indistinguishability.

Consider a symmetric pairwise interaction potential V (r,,r,) = V(r,,r,). Let us search for
an operator giving the expected outcome,

N N
N 1
Viry,ro, ry) = E V(rn,tm)|r1, T2, ..., TN) = 3 g V(rn,tm)|r1, T2, .., TN). (2.30)

n<m n#m

One can guess the following form:

V = %/ddr/ddr/aT(I‘)aT(I‘/)V(r,r’)a(r/)a(r). (231)

That this is indeed the correct form can be checked by explicitly computing the action of the
creation/annihilation operators on a generic state:

a'(r)a’(r)a(r)a(r)|ry, ro, ..., vy) = al (v)a’ (v )a(r)a(r)al (r1)...al (rn)]0)

N
= Z " (r —rp)al(rp)al (fa(r)al (r1)...a’ (rp_1)a’ (rpy1)...a’ (rn)]0)
n=1
N N
=3 "o —rn) Y 6 — )l (rn)al (r1)..al (rp_1)at (rni1).al (rx)[0)
n=1 m#n
N
= Z §(r —1,)0(r" —rp)|r1, T2, TN). (2.32)
n,m#n
Note: the naive expression § [ d%r [ ddrV (r v')p(r)p(r') does NOT work (exercise: show this).
Referring to the logical structure one must first remove the particles involved, weigh with

the value of the operator matrix element, and then put the particles back in in the reverse order
(to be consistent with the statistical signs under exchange).

The general expression for a two-body operator is thus

CMFT(2.14)

CMFT(2.15)

02 = Z OWrM/aLaL,a)\/aA, OHH'A)\/ = </1,,/L/‘O|)\)\/>. (233)

AN !
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Examples 1) Coulomb interaction: just did it !

2) spin-spin interaction is fundamental in magnetism. From above:

Vg [t [a Y IS0 Swpalal (an (s, (230)
aa’ BB’

with J(r,r’) the exchange interaction (usually mediated in solids via electronic wavefunction
overlap).

e More than 2-body interaction: not usually considered, look at literature.

Further in this chapter: develop fluency by considering specific examples, mostly the interacting
electron gas in solid-state media.
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2.2 Applications of operatorial quantization

Focus on electronic degrees of freedom. Principle 1: reduce many-body Hamiltonian to one
containing only essential elements for electron dynamics. Include pure electron part H. but also
interactions between e and ion lattice. First approximation:

2

o= / d'ral (r) B’m + V(r)} 0o (r),
Ve = / dir / 4V (r — v')al (R)al, (1) (1 )ag (1), (2.35)

with V(r) = >, Vei(R; — r) is the lattice potential felt by the electrons. We assume Ry fixed.
Spin included for completeness.

Despite its simplicity, this accommodates a wide variety of phases from metals to insulators
to magnets. To go further, we first study the non-interacting model.

Electrons in a periodic potential

:Phys
Bloch’s theorem: eigenstates in a periodic potential can be written as Bloch waves (see

Pren (1) = €™ tgen (1) (2.36)

where the crystal momentum k takes values in first Brillouin zone k; € [—7/a,7/a] (we assume
that potential has same periodicity in all directions, V(r + ae;) = V(r)).

n labels the energy bands of the solid, and uy, (r+ae;) = uk,(r) are purely periodic on the lattice.

Two complementary classes of materials where Bloch functions can be simplified considerably:
nearly free systems, and tight-binding systems.

Nearly free electron systems Elemental metals from groups I-IV of periodic table: electrons
are 'nearly free’: their dynamics largely oblivious to Coulomb potential from ionic background
and their mutual interactions. Conduction electrons experience a pseudopotential incorpo-
rating effects of ions and core electrons. Mobility so high that conduction electrons effectively
screen their Coulomb interaction.

Good approx: neglect lattice potential (for crystal momenta away from boundaries of Bril-
louin zone k; = 4+ /a). In practice: set Bloch function to unity, ux, = 1 and use plane waves

8ngs)tates of non-interacting Hamiltonian. Represent field operators in momentum space
E%U . with

2m

N k2
o = D gy et (2.37)
k

with summation over all wavevectors k and summation over spin indices.

Turning on Coulomb between electrons:

N 1
Vee
k.k’,q

= 577 2 Veel@_gy 0 g0 ik (2.38)
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where V.. (q) = 4me?/q? is the Fourier transform of Coulomb potential V. (r) = e2/|r| (we’ve set
e = 1).

Fourier transform of Coulomb potential

e2 . 0o ™ 2m etar cos 0
Vg = [ &r—e9T=¢e* [ drr® [ dfsing | dp—
|| 0 0 0 r

00 -1 —qr . 4 2 00 ) 4 2

= 2e? drg dre'” =~ e ) dre 0T — e 2.39

2 2
0 q qr q 0 q

where we have introduced a regulator §.

NB: technical point: to ensure neutrality, we must take into account the positive charge of
the ionic background. This is done by restricting the sum over q to a sum over q # 0 (exercise).

Hy + V.. is known as the Jellium model. The interaction term can be viewed as a scatter-
ing vertex between pairs of electrons.

Typical applications: need low energies. Zero-temperature ground state: one usually uses the
noninteracting ground state as a basis.

Bohr’s argument why this works: assume that the density of electron gas is such that each of
the N particles occupies a volume of order a?. Average kinetic energy per particle: T' ~ 1/ma?,
while Coulomb potential scales as V' ~ e?/a. Thus, for a much smaller than the Bohr radius
ag = 1/€?>m, the interaction part is much smaller than the kinetic energy part. So: for the dense
electron gas, the interaction energy can be treated as a perturbation. Most metals, however,
have a ~ ag, so the jellium model is not necessarily applicable to any particular case.

Ground state of system of N non-interacting particles: Pauli principle implies that all states
with e, = k?/2m will be occupied up to a cutoff Fermi energy Er.

Specifically, for system of size L, we have k with k; = 2mn;/L, n; € Z. Summation extends
to |k| < kr with the Fermi momentum kg defined through k% /2m = Ep.

The ground state of noninteracting fermions is thus a Fermi sphere, whose volume is ~ k%.
Relation to occupation number: divide this by space volume per mode (27/L)% so N = C(krL)?
with C' a dimensionless geometry-dependent constant (exercise: compute this for an arbitrary
dimension d).

In the operatorial representation, the Fermi sea ground state is
=N [ a0 (2.40)
‘k|<k‘p,(7

with |0) the state with no electrons and N is a normalization constant. The particular order in
which the product is taken has no physical meaning, but should really be set to a fixed convention
in any particular calculation.

CMFT(2.20)
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For weak interactions, low temperatures: physics governed by energetically low-lying excita-
tions superimposed on state |2). Therefore: declare Fermi sea |Q2) to be the 'physical vacuum’
of the theory. One can then consider a more physically meaningful set of creation/annihilation
operators by introducing new operators ¢, ¢/ such that ¢ now annihilate the Fermi sea itself,

i k>k
t _ ) G, k> kp, _ ) Oko, > kF,
Choo { o k< kp Cko a;rw’ k< kp (2.41) |cMFT(2.21)
Exercise: verify that ck,|{2) = 0 and that the CCR are preserved.

(2.18 (2.19) (2.21) (2,20) i
@ﬁ%@ented in terms of @macuum @_Wn the basis for the theory of

highly mobile electron compounds.

Tight-binding systems Lattice potential presents a strong perturbation of conduction elec-
trons. Realized in transition metal oxides. Picture: ‘rarefied’ lattice of ion cores: ions separated
by distance much larger than Bohr radius of valence band electrons. In this ’atomic limit’,
electrons arE ?3%}_‘&%/ bound to lattice centers. For microscopic theory: use a basis of Wannier

states (see , which are simply Fourier transforms of the Bloch states:
= e 3 Rl = e D).
keBZ

The Wannier functions are peaked around the corresponding atomic site. Pure atomic limit:
URr,(r) converges on nth orbital of atom centered on R. Away from this limit: the N formerly
degenerate states labeled by n split into an energy band.

Fermi energy between bands: insulating behavior. In a band: metallic behavior. Focus
from now on on metallic case.

. L ) (2.17) |
How to use Wannier states to simplify representation of 7 otice that they form an

orthonormal basis of single-particle Hilbert space: |r) = Y g |Yr)(Yr|r) = > g Y& (r)|YR) (con-
sider only n = ng, drop band index). Thus: induces transformation

= S vk, = 3 i 9 219

between real and Wannier space operator basis (i = 1, ..., N labels lattice sites).

Similarly, between Bloch and Wannier states:

aka \ﬁ Z el Righ al = Z e kR aJr (2.44)

keBZ

(2.23 (2.24) (2.17 . .
Can now use @WZ @Wpresent with Wannier states (using the fact that Bloch

states diagonalize single-particle terms):

I:IOZZ&@aleako— ZZ te®i—Ri)ey ol ay, = Za;tii’ai’aa (2.45)

k 1 [

with tiir = % Zk eik'(Ri*Ri/)gk.
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— electrons hopping from one lattice site i’ to another i. Strength of hopping matrix element ;;/
controlled by effective overlap of neighbouring atoms’ electronic wavefunctions. Tight-binding
representation useful when orbital overlap is small, so only nearest neighbour hopping is impor-
tant.

Exercise: 2D square lattice Set t;;; = —t for nearest neighbours. Hamiltonian:
I;[ = —t Z {ajm+17iyaiz’iy =+ a;rzyiyﬂaiz,iy + hC] (246)
Ty

Basis of Fourier modes:

1 o
§ : —takgiy—iak

ai;z:7iy = T/N e 1K1 a yZyakl,ky (247)
ke ky

with N = NNy, ko = azTﬂanw ne €0,1,..., Ny, — 1. Hamiltonian becomes

H= -2t Z [cos kya + cos kyal az,,kyakmyky (2.48)
K ky

Constant energy: —FE /2t = cos kya+cos kya. Half-filling: kya = +(7—kza) mod 27 (square Fermi
surface). Away from half-filling: around lowest energy, E ~ —2t(1 —k2a®/2+1—k2a*/2+...) =
—4t + ta® (k2 + k) + ..., so Fermi surface is circular.

2.2.2 Interaction effects in the tight-binding system

Nearly free systems: Coulomb interaction can renormalize properties of systems, like effective
masses, ..., but not really their nature. Electrons dressed by interactions become quasiparticles
with the same quantum numbers (charge, spin) as free electrons. This concept forms the basis
of Landau’s Fermi liquid theory.

By contrast: in tight-binding systems, interactions can have a drastic effect and change na-
ture of ground state and of the excitations. For example, we can then get a correlated magnetic
state or insulating phase.

. (2.23 . . (2.17)
One sub-band; Wannier states, use (%Téoulomb interaction %f

Vee = Z Uiirjjralyal 510000050
i
1 * *
Uiijjr = 5/ddr/ddT’@/JRi(I‘)i/JRi/(I'/)V(I'—I‘/)wRJ_,(I'/)'LZJRj(I‘). (2.49)

With hopping, Hamiltonian becomes
H= E :ajatii’ai’o + E Usirjjralyaly a0 ajo (2.50) [cMFT(2.27) |
i’ i’ jj'

which is the tight-binding representation of the interaction Hamiltonian.
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Most relevant terms: at most nearest neighbours. Three physically different classes of con-
tributions:

e Direct terms U;;/;;» = V;;r. Density fluctuations on neighbouring sites, Zi#, Viining with

=>. awaw Can lead to global instabilities in charge distribution, i.e. charge density wave

1nstab1ht1es

e Exchange couplings U/ ;; — U, inducing magnetic correlations: set Jg = Ujjji. We

. . _( AuB ApB )\ _
have (using tensor notation A ® B = ( A B ApB =..)
00 0 1
@ « (01 01y | 0010
U®"_<10>®(10) 0100 ]|
1 0 0 0
0 0 0 -1
0 —i 0 —i 0 01 0
Y v _
”®"_<z’ 0>®<¢ o)_ 0 10 0 |
-1 0 0 O
1 0 0 0
» . (1 0 1 0 10 -1 0 O
7w (o —1>®<0 —1) 0 0 -1 0|
0 0 0 1
1 0 0 0
0o -1 2 0
790=149 9 _1 0 =-1+4+2P (2.51)
0 0 0 1
10 0 0
0 01 0. . . . .
where P = 010 0 is the permutation operator matrix. In index notation,
0 0 01
Oap * O~ = 7(5(155»‘/5 + 25(15557 (2.52)
SO
U 1 1 1
08-S = Za;{aa;{wajgam X 0o Oys = ~1 Iaajn/amaer 2(1:& ;Bajaam
1
= —Zn iy + = 3 al, ;r,@ajaaw (2.53)
and therefore
A 1
ajaa;ﬁaiﬁaja =-2 <5 S; - Sj : +4’fliﬁj) (254)

and

1
> Uijjial,al, aioaz, = -2 JE (s -8+ 4mﬁj> (2.55)

i#] i#]
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leading to ferromagnetic coupling of neighbouring spins. This comes from minimization of
Coulomb interaction by minimizing overlap of wavefunctions: spins parallel mean total wave-
function antisymmetry requiring a node between the sites. Familiar from mechanism of Hund’s
rule in atomic physics.

Draw picture of overlapping wavefunctions. There must be a wavefunction node
between sites for parallel spins, so Coulomb energy minimized.

e In far atomic limit: overalp of neighbouring orbitals small, ¢;; and JiI; exponentially small

in separation. On-site Coulomb Hubbard interaction U;;;; = U/2, >
Zi Un41;y generates dominant interaction mechanism.

oot _
oot UiiiiQ o Qo Qio! Qig =

Keep only nearest neighbours, effective model becomes the Hubbard model
=ty alag U i 256)
(i) i

with standard notation for nearest neighbour.

Nobel prize-winning problem: solve the two-dimensional Hubbard model.
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2.2.3 Mott-Hubbard transition and the magnetic state
Hubbard model: paradigm of strongly-correlated systems for over 4 decades. Ground state ?

Excitations 77

Phase diagram: depends on a number of parameters. 1) ratio of Coulomb interaction scale
to bandwidth U/t, 2) filling fraction n (average number of electrons per site), 3) (dimensionless)
temperature T/t. Need only 0 < n < 1 by particle-hole symmetry (exercise).

Look at low T', low density n < 1. Electrons hop around a lot. Expect metallic behaviour.

By contrast: consider half-filled case n = 1. If interactions are weak U/t < 1, may again
expect metallic behaviour. On the other hand, for U/t > 1, double occupancy in inhibited
and electrons become ‘jammed’. In this strongly correlated state, mutual Coulomb interactions
between electrons drives the system from a metallic to an insulating phase with properties very
different from conventional band insulator.

Experimentally: low-T Mott insulator is usually accompanied by antiferromagnetic ordering
of local moments. This can be understood from the Hubbard model (see the exercise ‘Su-

perexchange and antiferromagnetism’). By considering a half-filled lattice in the limit of large
interactions U > t, one obtains an effective spin model with antiferromagnetic couplings,

H=17J (Sl Sy — i) (2.57)

with J = 4% the antiferromagnetic exchange strength.
Interpretation: anti-parallel spins can take advantage of hybridization and reduce their kinetic
energy by hopping to a neighbouring site. Pauli principle prevents parallel spins from doing this.

This process, formulated by Anderson, is known as superexchange.

Extended lattice system: correlated magnetic insulator, with Heisenberg Hamiltonian

H=17Y S-S, (2.58)
(mn)

with J ~ t2/U. Charge degrees of freedom are quenched, spin DOF can propagate.

Doping away from half-filling: effective Hamiltonian is t-J model

Hy_j=—tY Pual,anPi+ > Sp-S,. (2.59)

(mmn) (mn)

CMFT(2.31)
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2.2.5 Quantum spin chains

Coulomb interaction: can lead either to ferromagnetic (‘exchange’) or antiferromagnetic (‘su-
perexchange’) behaviour.

Models of localized quantum spins in one dimension: quantum spin chains.

Quantum ferromagnets Heisenberg model (1929):

H=-JY S, -S. J>0. (2.60)
)

(mn

Here, the spin can be carried by e.g. an atom with nonvanishing magnetic moment. All we need
to know:

i) the lattice spin operators obey the SU(2) algebra
[S;,S*g;] = 0t Gk (2.61)
ii) the total spin of each lattice site is S (half-integer).

Since J > 0, Hamiltonian favours configurations with spins parallel on adjacent sites. A ground
state for the system: all spins in the same direction, say z, |Q) = ®,|Sm) where |S,,) is such

that SZ,|Sm) = S|Sum).

System is in fact highly degenerate: rotating all spins the same way does not change the GSE,
so system possesses a global rotation symmetry.

From before: expect that this global continuous symmetry will entail the presence of low-lying ex-
citations. We now discuss these spin waves, starting from a semi-classical picture with .S >> 1.

In limit of large S, and at low excitation energies, describe spins in terms of small fluctua-
tions of the spins around their (ordered) expectation values.

Spin raising and lowering operators: S’;ﬁ = S’fn + lé’ryn with
35,0 ] = £6um S, (9508 | = 260m 5, (2.62)
To make use of fact that fluctuations are small, use Holstein-Primakoff transformation
S—=al (28 —al am)'/?, St = (25 —al am) ?am, S =S —al am  (2.63)
Utility: when S > 1, expand in powers of 1/S to get
S~ (29)Y%af St~ (29)2a,,, Sz =8 —al an. (2.64)
Substituting this in Heisenberg Hamiltonian, get
. o 1 A, A "
H=-7)" (5m5m+1 + 5(S,;s*mﬂ + SmSj,“lH))
=—-JNS? — JSZ (—2a:rnam + (al i + h.c.)) + O(5?)

= —JNS?+J8 (al, .y — al,)(@mi1 — am) + O(S°) (2.65)

CMFT(2.44)

CMFT(2.45)

CMFT(2.46)
CMFT(2.46a)
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Keep only fluctuations to order S. Quadratic Hamiltonian: can be diagonalized by Fourier
transform, imposing PBC S,y = S, for convenience,

N
km 71km T
Z € Ay Um = —F—= Z € ks [ak'7 ak/] = Okp (266)
m=1 ‘F keBZ
Hamiltonian becomes
H=—JNS*+ Y hwpalay + 0(S°), hwy, = 2J5(1 — cos k) = 4JSsin?(k/2)  (2.67)

keBZ

For k — 0, we have hwy, — JSk2. These massless low-energy excitations are known as magnons
and describe the spin-wave excitations of the ferromagnet. Higher order terms in 1/5, if taken
into account, then correspond to interactions between magnons.

Quantum antiferromagnets Antiferromagnetic Heisenberg model:

H=7Y S,-S,, J>0. (2.68)

Only a sign difference: physics radically altered !

For a bipartite lattice (two sublattices A, B such that neighbours of one sublattice always
belong to other sublattice), the GS are close to a staggered configuration known as the Néel
state, with all neighbouring spins antiparallel. Again, GS is degenerate.

For a non-bipartite lattice, e.g. the 2D triangular lattice, no spin arrangement can be found
where all bonds can give full exchange contribution J. Such spin systems are called frustrated.
Other example: Kagomé lattice.

Back to 1D: chain trivially bipartite. Strategy: express H in terms of bosonic operators. Be-
fore, for convenience: apply canonical transformation, rotating all spins on one sublattice by 7

around the = axis, i.e. Sq — Sa = Sa, S5 — S% = 5%, S% — S% = —S%, S5 — S3 = —5%.
Hamiltonian becomes

H=-7)" (m SZ 1 — (s S+ SmSm+1)) (2.69)

Doing Holstein-Primakoff, one gets

H=-NJS*>+ JSZ ( am + am+1am+1 + amami1 + amam+1> +0(89) (2.70)

CMFT(2.47)

CMFT(2.44b)
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Awkward structure: although quadratic, ‘pairing’-like terms. After Fourier a,, = ﬁ >k e~ tkma,
get

3 JS I I
H = 7NJSQ + W Z <Z(€Z(kk ym + el(kik )(erl))aL(lk/‘i’

k,k’ m

+(Z efi(k+k/)mfik')akak/ + (Z ei(k+k/)m+ik')aza;>

m m

= —NJS?+ JSZ <2a2ak +e*ara_p + efikaLaT_k)
k

= —NJS?+ JSZ (Zalak + cosk apa_x + cosk a2a1k>
k

= —NJS?+ JSZ (azak + a_kaT_k — 1+ cosk(a_rar + a,taT_k)) (2.71)
k

where we have changed summation labels K — —k& in some terms to simplify. This leads, finally,
to

i =-NISS+1)+I5Y (o as) ( vlk s ) ( a%kk ) Lo (@)
. )

with v = cos k.
To solve this: use a Bogoliubov transformation. This sort of transformation is extremely

important for many applications, including superconductivity, so we do it in detail for the case
at hand.

We look for a transformation from the set of operators a; to new operators «aj preserving the
canonical commutation relations

[, af,] = O (2.73)

Writing the transformation explicitly in terms of a matrix U,

( a‘i > —u! < aﬁ_’“k ) (2.74)

ar \ _  Un(k)ax + Ura(k)al
( aik ) a ( Uz (k)ak +U22(k;)ai: ) (2.75)

Consistency requires U (—k) = Usa(k), Usy(—k) = Uay (k). For preservation of the CCR, we
thus need

Ok = [akva;] = [Ull(k)ak + Ulz(k)aikaﬂ(_k/)afk’ + UQQ(_k/)aH
= (Ur1(k)Us2(—k) — Ur2(k)U21 (=k))0krr = (|U11(K)|* — |Ur2(k)|*)dkrs (2.76)

We thus need to fix |Uyq(k)|> — |Ui2(k)
phases here without loss of generality)

2 = 1. A good representation for U is thus (we fix the

U — < cosh @, sinh6y

sinh 6, cosh 6y ) = cosh 6,1 + sinh 00 (2.77)
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We have UT = U but (by explicit calculation)

-1 _ coshf, —sinhf, \ e e
v ( —sinh @,  cosh6 = cosh 1 —sinh 640" = 0"V (2.78)
Thus,
UU =1 Uc?Ule* =1 = Uo*UT = 0> (2.79)

this last condition being a pseudo-unitarity condition.

The quadratic form in our Hamiltonian is now

(o) (o 1) () = ek e waemom () e

The matrix is

U A+ o)UY = 0*Uo*(1 +y,0%)0*Uc?
(cosh 01 — sinh 05 )(1 + v,o®)(cosh 81 — sinh Ho™)
[(cosh — vsinh 0)1 + (— sinh 6 + 7 cosh 8)0”] (cosh 81 — sinh 6c™)
= [coshf(cosh @ — ~vsinh #) — sinh §(— sinh 6 + v cosh §)] 1
+ [cosh 8(— sinh 6 4 ~y cosh #) — sinh #(cosh § — sinh )] o*
= [cosh20 — ysinh20] 1 + [— sinh 20 + ~y cosh 20] o™ (2.81)

where we have used the identities cosh? @ + sinh? @ = cosh 26, 2 sinh 6 cosh § = sinh 26.

The resulting matrix is thus diagonal if 6 is chosen such that
~r = tanh 20y (2.82)

This makes

sh? 260 — sinh? 26 1
~1yt(1 2 U1 = (cosh 20 — v sinh 20)1 = 2 1= 1 (2
U, )" +yo")U, (cosh 260 — ~sinh 26) osh 20 p—sY (2.83)

and since we have 1 — 42 = 1/cosh2 20 on the one hand, and 1 — 4% = 1 — cos? k = sin? k on the
other, we finally find

_ P a .
(az a,k> (U-HTA 4+ po™)U? ( aTkk ) = |smk|(oz£oz;C +a,kaik) (2.84)
so the Hamiltonian is
N 1
H=-NJS(S+1)+2JS> |sink| <a};ak + 2) (2.85)
k

For the antiferromagnet, the spin-wave excitations have a linear spectrum as k& — 0. Although
derived for large S, this remains true even for S = 1/2, albeit with a renormalized velocity (linear
coefficient).

CMFT(2.48)
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The weakly-interacting Bose gas (Pitaevskii & Stringari, 4)
Ground-state energy and equation of state (Pitaevskii & Stringari, 4.1)
Hamiltonian for interacting BG:
i 1 P
= —makak + BV Z ank+qak,7qak/ak
k kk'.q
Simplification: only q = 0 part of potential is important, so can write

§ )’ Vo Ly i
= akak + ak+qak, ax’ak

kk’

2-19

250

257)

The idea here (Bogoliubov) is to exploit the fact that the ground state is macroscopically occu-
pied, <a0a0> No ~ O(N) to replace the quantum-mechanical operators ao, a(T) by c-numbers:

ag = \/NO

25%)

.7)
in %In an ideal gas, at T = 0, Ny = N. In an interacting gas, occupation numbers for
states k # 0 are finite but small. In a first approximation, we can thus neglect all k # 0 operators

in the Hamiltonian, and write the ground state energy as

N2V,

E:
0~ oy

259)

Higher-order approximation: excitation spectrum and quantum fluctuations (Pitaevskii

& Stringari 4.2)

Keeping only quadratic terms in k # 0 operators, the Hamiltonian is

Vo Vo
H= —aoaoaoao + Z —akak + — o Z(4a8a£aoak + aLaT_kaoao + agagaka,k).

2V iz0

Bogoliubov approximation: be careful with first term:

a%agaoao = N?_9N Z aLak.
k#£0

By defining the renormalized coupling g as

qg m
VO:g(l‘i’VZﬁ)v

k#0
the Hamiltonian becomes
R N2 k2 n
H—QW—F TaltakJr—Z(?akak—l—aka K T axa_x + kgz )
k k0

This can be diagonalized using a Bogoliubov transformation, finally yielding

H=Eo+Y_e(k)bb,
k

290)

291)

2

299

299)
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with ground state energy

N2 1 k> m(gn)?
E0=97+§ a(k)—gn—%+ 2 (2.95)
kA0

2V

and excitation spectrum
1/2
gn o ko
k)= |—k — 2. PS(4.31
e(k) {m +(2m)} (2.96) [Ps(4.30) ]

this being the famous Bogoliubov dispersion relation for the elementary excitations of the
weakly interacting Bose gas.
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Supplement: graphene and nanotubes

Two sublattices with base vectors a; = (v/3/2,1/2)a and a; = (v/3/2,—1/2)a. Tight-binding
Hamiltonian:

=—t > (aj(r)az(x’) + h.c) +€Z r) + aj(r)as(r)) (2.97)

(r,r’)

Reciprocal lattice vectors: defined from a;G; = 276;;. Get Gy = 27%(1,:&:\/3). Fourier
decomposition of fields:

1 .
§ : —i2 (k1G1+k2Ga)-
aaa(r) - 7\/]\[ € 12.”( LGtk 2) raa0k7
k

1 4

_ i2 (k1G1+k2Ga)-r
Qaok = —— e'ar Ago (T 2.98
k N Er (r) ( )

with k; € [0,27/a] quantized in units of 27 /L; (N; sites in direction 4, N sites in total). Inversion
formula:

]. ;_a ’ ’
=Y elrr (k)G ko mka)Ga) T — 5y G (2.99)
r
In Hamiltonian: hopping term:
oS t s _a s _a / / /
Hhop =t 30 3 MGG £ (GG ol Ly e,
(r,r’) kK’
Z Ze—l2w((k1G1+k2G2) r— k’ G1+k Go)'r) Z e‘ (k1G1+k2G2)- baa ka/20-k’ + h.c.
kk’ r
= —tz (1+ e~ thia 4 e_z(kl_’”)a)alakaggk + h.c. (2.100)
k

Hoppings: r — ' = b,, by =0, by = —a;, b3 = —a; +ay. We have a; - G| =27, a; - G = 0,
a2~G1:O, a2-G2:27r. Then, Gl-b2:—27r, G2~b2:Oand G1~b3:—27r, GQ'ngQ’]T.

Hamiltonian in Fourier modes:
! _tf(k) 1ok
= ( Lok ) ( " ) < > 2.101
; 10k %20k —tf (k) c oo ( )
with f(k) = 1+ e~ #10 4 g—ilki—ka)a

Eigenvalues (for ¢ = 0):

) ) . ) 1/2
£k = :|:t|f(k)| — 4t (1 _’_efzkla _i_efz(klflw)a)(l +ezk1a _’_ez(klfkg)a)]
= +t[3+ 2coskia + 2cos(ky — k2)a + 2 cos kga}l/Q . (2.102)
.25)
We have (kg, ky) = 5= (k1G1 + k2Go) = ( L = (k1 + k2), k1 — k2). The dispertion relation
vanishes for k1 = 3 = —kg and k1 = 73— = —ky, or kz =0,ky = —Z and k, =0,k = 73—2.
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Carbon nanotube From graphene sheet: fold into armchair tube. Periodicity: ¢ (r + N(a; +
as)) = ¥(r) with N the number of cells in transverse direction, L = N|a; + as| = Na/3 is
tube circumference.

From Fourier representation of wavefunction: periodicity gives

e~ 2w (k1GithaGa)-(artan)N — (2.103)
so this gives quantization ki + ky = v/3k, = 27rm/Na = 27+/3m/L, with m integer.
Defining kj = ki — k2 = ky, dispersion relation becomes (for k; + ky = 0, i.e. m = 0)
ek, = £t [3+ 4 cos kyja/2 + 2 cos kyjal 1/2 (2.104)

This has nodes at points kjja = +47/3.



Chapter 3

Path integrals

The objective of this chapter is to introduce the notion of path integrals, in other words ‘sums
over histories’. Although Feynman’s name is most often associated with this framework, the
original idea was first applied to stochastic processes and Brownian motion by N. Wiener, and
then to quantum mechanics by P. A. M. Dirac. Feynman then considerably developed the
quantum-mechanical framework during and right after his doctorate.

We will begin here by going back to the classical mechanics of a single particle performing
random (Brownian) motion. Many important concepts are illustrated by solving this problem, in-
cluding scaling, universality, divergences, regularization, renormalization, Green’s functions and
the fundamental equivalence of d+ 1-dimensional classical and d-dimensional quantum problems.

3.1 Classical wanderings

3.1.1 Brownian motion

Mankind has long been aware of the seemingly random motion of particles embedded within a
fluid. For the historians among you, it might be interesting to remember that the Roman poet
Lucretius described it in one of his scientific poems ‘On the Nature of Things’ (circa 60 BC).
More importantly, it was qualitatively described in more scientific terms (through microscope
&?gg}éflagg&sl)_mﬁfbert Brow.n in 1827. Or.le of Albert Einstein’s Fhree famqus papers of 1905
2] s entirely devoted to precisely this subject, and helped establish Brownian motion as the
definitive proof of the atomic hypothesis. Einstein was hereby able to determine the size of
atoms, and Avogadro’s number.

We will here focus on a somewhat simplified scenario which tends to Brownian motion in a
certain limit. This is the problem of a random walker on a regular lattice. Besides Brownian
motion, the random walker problem has extremely many applications besides physics, for example
in ecology, biology or economics.

3.1.2 The random walker

Our objective in this section will be limited to making some quantitative statements about
random walks. Being by definition random, such a walk of course cannot be described exactly,
and our objectives will thus be limited to making probabilistic statements.

We will begin by considering the most easily treatable case of a random walker moving in a
d-dimensional hypercubic lattice. Let us thus consider d-dimensional Euclidean space, with basis

3-1
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unit vectors

n,, w=1,..,d, suchthat n,-n,

d
> AR, = . (3.1)
=1

Let us denote the lattice spacing as a. Our lattice is then defined by all points
d
Lo={r} suchthat r=a Z nt'n,, nt e N. (3.2)
p=1

Each point has 2d neighbours; this is known as the coordination number of this lattice, and
we will denote it as ¢, .
Let us now imagine that we are observing a walker obeying the following rulesﬂ

e rule 1: at each time interval ¢, the walker takes one step on the lattice;

e rule 2: the direction each step is taken in, is uniformly distributed between the ¢, possible
choices.

ig:randomwalkl

Examples of paths traced out by such a walker are provided in Fig. ﬁme of a two-
dimensional square lattice. Some comments are immediately in order. The meanderings of the
walker away from the origin are slow: some sites are visited many times over (the number of
times a site is visited is not visible in the plots, but can be imagined) and the path therefore
tends to be divided into dense clusters where the wanderer keeps retracing his steps, linked by
narrow bridges representing rarer chance instances where the wanderer follows more or less one
direction for a while. Very occasionally, the walker Wazl%ggggm%%{l further, as if a drift current
was present (e.g. the bottom right instance of Fig. ﬁ)._TheTmstances are rare events.

The second rule is an expression of the Markov property of the random walk, namely that
the status of the system at a point in time is sufficient to determine its status at the next time
increment. Processes with discrete time evolution obeying the Markov property are commonly
referred to as Markov chains.

The random walker, despite following extremely simple rules, displays rather interesting be-
haviour (you can view this as an example of emergence: simple rules yield rich physics). We
can ask ourselves very many questions about the walker. Most fundamental of all is:

e What is the conditional probability P, ; |r, of finding the walker at site r; at time
t1 = to + 8ot (s being the number of steps taken) given that it was at r( at time ¢?

This probability only makes sense if t; > t(ﬂ In theory, a detailed answer to this question is
sufficient to answer all possible questions one might have about the random walker, since these
will be expressible as functions of the P, ¢ |r,.¢,-

We can state a few obvious facts. We consider a (spatial and time) translationally-invariant
system, so the probabilities are unchanged by a constant shift of coordinates:

P’f‘1*7‘2,t1|7‘0*7‘2»t0 = PT‘l,tl\T‘o,to = PTl,t1+t2\7‘o,t0+t2‘ (33)

We can therefore view the origins rg, tg as being fixed from now on. By definition, at time %,
our walker is standing at rq:
P’f‘lyto\T‘mto = 57‘1,7‘0' (34)

IThe commonly made analogy to a drunken wanderer is entirely inappropriate: our walker is a very predictable
being, since it certainly makes one step at each unit of time with perfectly uniformly random choice of direction.

2You can view this as a manifestation of the ‘arrow of time’ in classical mechanics. In quantum mechanics, we
will be able to make sense of propagators for negative times.

eq:dEbasisvec
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Figure 3.1: Examples of random walks on the square lattice. Each walk consists of 1000 steps. ‘:Eig:randomwalkl

Second, all probabilities are positive-definite and bounded:

0 SPT S 1 VT‘1, th Zto. (35)

1,t1|70,t0

Third, the walker must be somewhere, so the probabilities obey the ‘sum rule’

Z P”‘l,t1|7‘o,t0 = 1 V tl Z tO' (36)

r1€L,

There are some further obvious facts that can be stated. For example, the probability must
vanish if the time is not sufficient to go from r¢ to r; in time t; — #g:

trrode =0 if Py — 7| > %(tl — 1) (3.7)
(meaning that we can interpret a/dt = v,,., as an effective maximal (light) velocity), so the time
dynamics in our system is causal: the walker will not be nonlocally teleported around the lattice
under time evolution. As we will see, this effective light velocity is not very meaningful: the
overwhelming majority of random walks will propagate at a diffusion velocity vg < Vpax-
Another statement one could make is that since our hypercubic lattice is bipartiteﬂ the
probability possesses a ‘parity’ feature whereby it is alternately (non)vanishing on each sublattice.

P,

3That is: it can be divided into two sublattices A and B such that all nearest neighbours of » € A are in B,
and vice-versa.
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Figure 3.2: Examples of random walks on the triangular (top), square (middle) and honeycomb
(bottom) lattices. Each walk consists of 1000 steps. The similarity between these three instances
is an illustration of the concept of universality.

This is an example of a non-universal statement: it relies on the microscopic features of the
lattice here considered, and will not be true of other lattices. The most appealing way of thinking
which we will pursue focuses of course on the universal features. What is meant by this? Things
that do not depend on microscopic details, but rather apply to whole classes of situations. As a
simple illustration here, consider the problem of the random walker but on different lattices, say
the triangular and Eongya%%le’aqﬂgs. The triangular lattice is not bipartite; the honeycomb one
is. Looking at Fig. in which example paths are given for triangular, square and honeycomb
lattices, one can observe a rather striking similarity. This similarity becomes exact in the so-
called scaling limit taking the time interval (number of steps) and distance scale (lattice spacing)

respectively to co and zero in a meaningful %ayrgvdlgling}gl e a\ﬂl& do later for the square lattice).

The concept of scaling is illustrated in Fig.

3.1.2.1 Time evolution

Let us now focus on the time dependence of the occupation probabilities. Our starting point is
the implementation of the second rule of the walker, namely the one-time-step relation

1
P’f‘l’t1+5t\7‘0,t0 = c § : P’f",t1\7‘0,t0 (38)
L

2 r'n.n.ry

fig:randomwal
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Figure 3.3: Illustration of scaling in random walks. The top left walk has 125 steps of length 32
on the two-dimensional square lattice. Each subsequent curve has four times as many steps of
half the length. The mean distance from the origin reached by the walker remains the same.

where we write the requirement that ' be nearest neighbour to r; as 'n.n.71. For our hypercubic
lattice, this is specialized to

d
1
Pr17t1+5t‘7‘0,t0 = ﬁ Z Z P”'l“rﬂﬂ"ﬁ”,tll’r‘o,to‘ (3'9)
o=%£1p=1

We here recognize the discretized version of the Laplacian operator, which we will denote V?2
and define as

1
a2

d
Vifr = Z [fr+a'fLH + fr—aﬁu - er} . (310)
p=1
This scales to the usual Laplacian in the continuum limit: if the lattice-defined f, scales to a
differentiable function f(r), then

lim V2 f, = V2f(r). (3.11)
a—0
We can thus rewrite our one-time-step relation as

2
a” o
Pry tivstiro,to = Protilroto = @Vapn,tﬂmtw (3.12)

This is simply a lattice version of the continuum diffusion equation (in reality here: the heat
equation)
0
<8t -D v2) P(r,t) =0, (3.13)
in which D (the diffusion constant) parametrizes the efficiency of the diffusion (the higher
D is, the quicker an initial state diffuses). Here, this constant is taken as the limiting value

fig:randomwalkscaling

‘eq:onetimestepcubic

‘eq:onetimestep
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(assumed to be finite, and thus choosing a? o dt in the scaling limit)

a2
D= lim ——. .14
o S5t (314
0t—0
Getting back to our problem of describing the random walker, given an initial configuration
of probabilities

P”‘Jo\"’o,to = Lty (315)

-onetimeste
the probability configuration at all times ¢; > tg is thus obtainable from the solution of (El?%, :

which can in turn easily be obtained by simple Fourier transformation. Adopting the convention

™

@ g4 ) .
fr= ad/_l (;lgdezk"'f(k), flk)y=> e *7f,, (3.16)

rcly

we can write our single-site-localized initial condition as

Pr tolro.to = Or,ros Prtolroty = €57 (3.17)
. . -onetimeste
The one-time-step equation (g l?; becomes
L
Pk,t1+5t\m,to = P Z COS(k”a) Pk,t1|r0,to- (3-18)
p=1

. A . . -onetimeste
Using this, we can immediately solve or arbitrary t; > tg as

t1—to
™ 5T
a

P, =a ﬂeik'(“_r") 1 Z cos(k*a) (3.19)
mtiroto = (27)d d ' '
T a p=1

This is the full, exact solution of our problem: no approximations have been made, so this
equation is exact for all values of 1 and t; > tg. In particular, the fact that all probabilities are
positive can be easily verified. - onetinestensolved

This is all very nice, but the fact remains that 1S a bit unwieldy and does not make
the physics very transparent. The question thus now becomes: can this equation be further
simplified, at least for the most likely paths that our walker can follow?

3.1.2.2 Continuum limit

Let us consider takin %Q?mleié%t s@ﬁv& 0. For a fixed time interval ¢; — tp, the exponent of the
square bracket in ecomes very large. This term would only survive in the limit ¢ — 0 if
we were to simultaneously scale k*a to zero. For finite momenta, this means taking the lattice

spacing to zero (which justifies calling what we are doing here a ‘continuum limit’). Expanding
the cosine under this assumption gives

t1—tg

t1—tg
T

d 5t
1 2 o o2
[d E Cos(k:”a)} = [1 — ;TikQ + } —y e (1—t0) i K (3.20)
p=1

in which we now explicitly recognize our diffusion constant D @3 In this limit, the probability
density (per unit volume) of finding the particle around r; at time ¢; scales to a smooth function

eq:onetimeste
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of space and time coordinates:

. d > 'k —(t1—to) Dk*+ik-(r1—70)
p(r17t1|‘r0,t0) = hma P'phtl"ro,to - W@
—00

1 o |: |T1 — ’I"()|2 :|
= exXp |- | .
4Dt —to)] T | 4D(t — to)

From this equation, we immediately see that after a time interval t; — tg, the typical distance
from the origin at which we find our walker is

(3.21)

1
|T1 — ’l°0| ~ (tl — to)y, V= 5 (322)
This is our first example of a critical exponent. Here, it is the Hausdorff dimension of the
o . . . 1
curve: the path has total length ~ t; — tg, but it is confined in a ball of radius ~ (¢t; — tg)=.
Summarizing, this probability density is a positive-definite symmetric kernel which satisfies
the normalization condition

/ddr p(r, tlro,to) =1, (3.23)
and the diffusion equation

0
(5~ D9*) pirtiro. ) =0 (3:24)

p(rl,to|r0,t0) = 5((1)(7‘1 — 1"0). (325)

Another interesting equation obeyed by the kernel originates from the fact that at any inter-
mediate time, the walker must be somewhere. This completely trivial statement translates into
the following nontrivial composition property

with initial condition

/ddrl p(ra, ta|r, t1) p(r1,t1|ro, to) = p(ra, ta|ro,to), V1 such that to >t > ty. (3.26) ‘eq:pcomposition

Said otherwise, our walker has no memory whatsoever. The diffusion process is purely local in
time (in other words: there are no retarded effects), as per the (microscopic) Markovian dynamics
highlighted previously.

3.1.2.3 Green’s function

A simple question we can now ask (and answer!) is the following: how muc time, &%%%e%‘s%me 4
walker spend on a given point ;1?7 This is simply given by explicitly summing (B-.19

o0 e .

o ddk ezk'(rl—ro)
P totnstire.to = ad/ =Gp —rp- (3.27) |eq:Gsqlat
2 Prrostvnts =4 | G TS i)

. -onetimestepcubic .

As can directly be seen from 1E§ , this quantity obeys the equation
1A
grl—ro = 57’17"‘0 + ﬁ Z [gr1+aﬁu—ro + grl—a'ﬁ,“—ro] (328)
pn=1

or more economically in terms of our lattice Laplacian

2d

- Vzgrlf'ro = ;57«1”«0‘ (3.29) ‘eq:GreensdiscreteLap
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The kernel G is thus the Green’s function of (a constant times) the Laplacian, namely it is
the kernel which inverts this operatorﬂ The physical interpretation of the Green’s function is
thus quite direct for our random walker: for an infinitely long walk, G, _, is the total number
of time steps spent by our walker at r1, given that it started at rg.

3.1.2.4 Divergences

. . . . :Gsqlat .
Simply by looking at the integral representation @jﬁthe region of small momenta, we see
that the Green’s function is given by a convergent integral for d > 2. For d = 2, we see that
we get a logarithmic divergence (in terms of a smallest allowable wavelength/infrared cutoff k.,

which we would like to put identically to zero) of the form [ dkz—f ~ —Ink.,;,; the d = 1 case
diverges like 1/k,,;,. This is simply a manifestation of the fact that in d < 2, the walker left to
wander for an infinite time, will tend to spend an infinite amount of time at each point of the
lattice.

Infinities make the interpretation of our results problematic, and we must find a way to deal
with them. You will no doubt have heard that dealing with infinities is the main object of the
theory of renormalization. Handling the simple infinities we encounter here can thus be seen

as a warm-up for more advanced dealings with renormalization.

Subtraction. The first way to deal with infinities is to... get rid of them by subtracting them
away. This is not as mindless as it may seem. Note first that, as a function of position, the
total time spent in one point is maximal at the origin. In other words, our Green’s function G
is maximal at ry = r9. We can thus consider a Green’s function G° (s for subtracted) which is
finite for all d by simply subtracting the (d-dependent, possibly infinity) constant Go:

- A%k etk (ri—ro) _ 1
Gy vo = Gri— —Qo:ad/ : (3.30)
T1—T0 T1—T0 _z (27T)d 1_ 522:1 COS(k‘“a)
-Greensdiscretela
Since we have merely subtracted a constant, this new kernel still obeys , but 1t 1S no

positive definite anymore. If fact, it is now negative definite.

Exercise: Green’s function in one dimension. Show that the subtracted Green’s function
in one dimension is exactly given by

1=

s —
Gy —ro = , (3.31)
Derivation:
gs_a/'%%e“" 1 _7a/% ﬁwﬁ%[cmieusiz
" _x 21 1 —coska _z 271'sm2’%a a’
a a

Regularization. Another way of dealing with infinities is to introduce some sort of deformation
parameter in the theory which renders all sums or integrals finite. Here, the infinities came from
the fact that we are considering an infinitely long duration of the walk, our walker never getting
tired of hopping around. Let us thus add assume that our walker obeys the additional rule, to
be enforced with rule 1 and rule 2:

4The Green’s function of an operator is of course only defined modulo a function which is in the null space of
this operator. Consider here adding a (lattice) harmonic function fy,(r) such that V2 f;, = 0.
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e rule 3: during each time step, with probability 7, our walker gets exhausted, quits the
game and disappears from the lattice.

A more physical interpretation of this ‘exhaustible walker’ problem is for example to imagine
that our walker is a radioactive particle subject to decay.

Given such a finite probability of our walker disappearing at each time step, our probabilities
(now denoted by a superscript 1) are now simply given by a time-dependent rescaling of our

earlier solution
tlftQ
P(n) = (1 - 77) ot PT‘l,tllTo-,tn' (332)

r1,t1|ro,to

Note that the sum rule now becomes

t1—tg
ZP’!('?»)tllT‘o,tO - (1 B T’) " Vi z to- (3.33)

1

For this exhaustible walker, the Green’s function becomes

o0

gr(“?)—ro = Z(l = 1)" Pry to+nst|ro,to- (3.34)

n=0

We obviously have that our earlier Green’s function is given by the limit  — 0 of the exhaustible
walker Green’s function:

Gri—ro = %1_%}) gv(-?)—rg (3.35)

Now however, the integral representation for G converges for all n > 0 (we by definition
necessarily have 0 < 7 < 1). This representation is

g _ o /Z ik elk-(ri—ro) (3.36)
LR I _= (2m)d ﬁ — 52221 cos(kta) .

and obeys the equation
2d
[—Vg + mQ] g,E,T_)rO = a2(1 _ 77) 57‘1,7‘0 (3'37)
where m can be interpreted as the effective mass (note that we now use the mass as superscript
label for the Green’s function). This is given here by

9 _2d n

aion (3.38)

m

(which is indeed a positive quantity since 0 < n < 1) For our walker, the mass is thus related to
the rate of exhaustion our walker displays as he wanders.

In the scaling limit, we will also take the mass to be finite (this means that we should scale
n ~ a® ~ 0t). The proper scaling of the Green’s function is

1 +oo ddk ezk-r
=1lim—_¢gm _ -
G () = lim 55 G = [ B (3.39)

this function obeying the equation

[~V +m?] G (r — 10) = 6(r — 1), r e RY. (3.40)

‘ eq:Pexhaustible
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Exercise: massive Green’s functions in d =1,2,3.

a) Show that the 1d Green’s function is

e_m"r‘|

Gm (7") =

2m

(3.41)

so the correlation decays with distance on a scale given by the correlation length £ = 1/m.

b) show that in the 2d case, the Green’s function becomes

d2k‘ e—z’k-r 1
G (1) |a=2 = /Wm = o o(m|r|)

(where K is the modified Bessel function of the second kind), with limits

1 m
o (P)]am2 ~ —— In[—|r|], 1
Gm(r)la=z = =5 In[Z|r|] Ir| < 1/m
and 1
Gon (1) a2 ~ 5(27rm|r\)*1/%*7”'?“\, 7| > 1/m.

c) show that in the 3d case, we get

Bk e kT e—m|r\
Gm(r)la=s = / (2m)3 k2 +m2  Ax|r|’

In the d = 2,3 cases, the Green’s function thus diverges at short distance, but in all cases

(3.42)

(3.43)

(3.44)

(3.45)

d = 1,2,3 it decays exponentially at large distances, with characteristic correlation length & =

1/m.

Derivation: Answers: Explicit calculations for the free propagators

a) 1d: By simple contour integration,

dk 67ikr efm\r\
gm(r):/ﬁ(kﬂm)(k—im) = Tom

b) 2d:

2k e—ikr 1o e e ikiricos?
Vg = [ER T LT [T g
Gm (7)|a=2 (2m)2 k2 +m2 42 /o /0 k2 +m?

1 o0 k 4
= —/ dk:i/ df cos(k|r|cos )
212 Jq k2 +m2 Jo

We can now use the identity (c.f. Gradshteyn & Ryzhik 3.715.18)
s
/ d6 cos(z cos ) cosnh = m cos %Jn(z)
0

where Jy, is the n-th Bessel function of the first kind. Substituting, we get

1o khoklr) 1
m —2 = — dk———F = —K
Gm(r)|a=2 27T/ k2 + m2 o o(m|r])

in which we have used GR 6.532.4,

> kJo(kr)
/0 dkk’2+m2 = Ko(mr)
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in which K, is the modified Bessel function of the second kind (here with n = 0).
The limits for small and large values of |r| can be obtained from the asymptotic forms of Bessel functions at
small argument,

Ko(z) = —In= 10 (2) + Z 22R92R (kN 24h(k 4+ 1) GR 8.447.3,
k=0
— (2/2)**
I = GR 8.447.1,
0(2) kgo (k2

or at large argument

Ky(2) = /;ize*'z [14..] GR 8.454.6.

1 27 g [eS) 26—1'16\7'\6059
g = —— d, df sin 6 dkk* ————.
Gm (7)|a=3 PE /0 ¢/0 sin /(; g~
Let z = cos 6. We get

1 _ ksm(k\r\)
o = d ik|r|z _ /
Gm()la=s 472 / k2 + m2 / = 27r2\'r\ k2 +m?

This integral is tabulated,

c) 3d:

/ dr ler:iabﬁ =me= a>0,Rb>0 GR 3.723.4
X

which gives the final result.

3.1.3 The path integral

It is straightforward to express the properties of the motion of our random walker in terms of
sums over the paths which can be taken. We can immediately write

Number of paths joining rg to r; with tlgtto steps

P, (3.46)

vhilrote = T number of paths out of 7o with “5 steps |

Let us work directly in the scaling limit. From @), we have that for initial and final
positions and times r;,t; and 77,1y, the probability density of finding the particle was given by
the exact (in the scaling limit) expression

(s, st 1 e (3.47)

p(re,telri,t)) = ——————exp | ———=— | - .
L. :pcomposition

On the other hand, we have the composition property 1@25) which can be concatenated. Let

us imagine that we split our time interval ¢ty — ¢; into IV equal inpergglgsqii%%ration i ]\;ti = At

(identifying rg = 7;,t0 = t; and ry = vy, tn = t5), and apply (g?g at each V — 1 intermediate

time step:

p(rytylrists) :/ H dhrpp(ry,tylrn 1t )PPy 1 NP2, Ena)ep(r, t i ).

(3.48)
In the limit N — oo, the time steps At become infinitesimal (remember that we are working
directly in the scaling limit: at each time step here, there are still infinitely many steps being
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taken on the original lattice, in other words we still have §¢/At¢ = 0). For an infinitesimal time
step, we can write

1 At | Ar(t,) |?
n ) tn no tn — -4 3.49
v ol )| oo [ | (3.49)
where Ar(t) ar ()
r{in Tn+1 — Tn r
= . 3.50
Al At dt (3:50)
We can thus write our probability as the path integral
1 de(t)]?
st = [ Dres [w / L al ] (3.51)
T(ti)ZTi
r(ty)=ry
where the path integral measure is here defined as
N Nd/2 .N-1
Dr(t)F[r(t) = 1l —_— dr, F({r, 3.52
/ r(t )] NS5 LMD(tf — tz)] / H rnf({ra)) ro=r; (3.52)
r(ti)=r; n=1 TN=Tf
1"(tf) Tf
where F'[r(t)] is the functional corresponding to the function F'({r,}).
For the exhaustible walker, we simply use and the limits (recalling @'ﬁl
) tp—t;
te—t; St
lim(1 — n) 5t = lim <1 - gde) = e~ (ts—t:)Dm? (3.53)
so we simply have
2
(T g, tplri ) = eGP e bl ). (3.54)
For the Green’s function, we have
G (1) = hm— me r,ndt|0,0) (3.55)

and we therefore obtain the path integral representation

D/ dt / Dr(t exp[ /dt’( +$ (t’)|2>] (3.56)

7(0)=0

t) r
A few comments are in order. Why did we even bother to define such a path integral, given
that we had the exact solution for any initial/final positions in equation @? The reason is
of course that while we were able to provide such an exact solution for this particular case, this
is by no means the usual situation. In most circumstances, we cannot solve the time evolution
equations exactly, and must be content with some form Of f%gporé)ximation. The time evolution is
implemented by an evolution equation of the form @—Wnericaﬂy containing other terms
whose effects cannot be tracked exactly. One then relies on approximations (for example that
the relevant dynamics is restricted to some low-energy/slow-changing configurations). Dividing
the time evolution into microscopi Itime steps as we have done here is then still meaningful:
expressions corresponding to @’ can always be written down irrespective of how our time

evolution occurs, whereas solutions like are more often than not too much to wish for.
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3.1.4 Visit and return probabilities

Let us now return to the random walker on the hypercubic lattice (before taking the scaling
limit), and address a slightly different question: what is the probability II,. ; that the walker has
trodden at least once on site r by time ¢, given that it started at 7o = 0 at time ¢ty = 07 For the
special case r = rq, this is known as the return probabilityﬂ

The probabilities Pmﬁ are not exactly what we are looking for (though it is intimately
related): summing these over all times would give the mean time spent at site r. Instead, let us
define the intermediate quantities Py ;,; of being at site r for the i-th time at time ¢. We then
have that

oo
P’r,t = 6r,06t,0 + Z PT,t;i- (357)
i=1
Note that only a finite number of terms contribute to this sum, since P, y; = 0 for ¢ > t/dt.
Note also that our definitions are such that P, ,; = 0. Since an i + 1-th visit necessarily follows
an i-th visit, we can write the recurrence relation (using homogeneity of the walk in space and
time)

Pr it = Z P11 P01 (3.58)

t1+ta=t

The summation of this relation over i = 1,..., 00 then yields

Pr,t - Pmt;l - 6r,06t70 = Z P'I’7t1P0,t2;1 - 51‘,0Pr,t;1~ (359)

t1+ta=t

The probability of having visited site r at least once is then
I, =Y Prya. (3.60)
t=0

Treating the more general case of the exhaustible walker, we can simply replace all the P by
P giving for example

P — PO —bp000= > PP~ 6n0P,. (3.61)
t1+ta=t
Using
i =3P, I, = lim 1T, (3.62)
t=0

and summing over time gives
G = 6,04 [1 = 6p.0] IV + GINTI(P. (3.63)

This gives us two very aesthetic equations: first of all, the return probability is simply expressed
in terms of the Green’s function at zero distance:

) =1- —. (3.64)

5In here and all further considerations, we assume that the walker has left the origin, so we exclude the initial
state at the initial time.

SDropping the 7¢,to arguments for notational simiplicity. Remember that our random walk is homogeneous
in space and (discrete) time.
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Second, the visit probability at site r is simply given by the ratio of the Green’s function at that
point to that at the origin:

(n) — G" 0 3.65
r W7 T 7é . ( . )
0

Some comments are in order. We know that for d < 2, lim, ¢ gﬁf’) — oo uniformly for any
r, 50 I[Ip — 1 and II, — 1 for any r. For d > 2 the return probability is less than one, and
decreases as 1/d for large d.
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3.2 The Feynman path integral in quantum mechanics

Let us now move to the realm of quantum mechanics. Instead of the time evolution being
driven by a stochastic process as in the case of Brownian motion, our system will now obey the
deterministic Schrodinger equation.

The path integral formulation of quantum mechanics was initiated by P.A.M. Dirac, but
pushed to new heights by R. P. Feynman. The book by Feynman & Hibbs contains a detailed
exposition of the method.

The path integral formulation of quantum mechanics possesses a number of advantages over
the standard formulation.

1. the classical limit (A — 0) is clear

2. it provides road towards non-perturbative methods

3. it serves as a prototype for the functional field integral

4. it has many direct applications for systems with one degree of freedom.

Our starting point to formulate the path integral is to perform a formal integration of the
time-dependent Schrédinger equation:

o) = HIW) W) = U, 6)|¥()), Ut t)=e #HE=0_ (366)

Considering the simplest situation in which we have a single particle evolving in a continuum
interval (with the position labeled by ¢), we can write the wavefunction in the real space repre-
sentation as

(g t) = (|0t = ({|UF, )| ¥(t)) = /dq Ulq,t';q,t)¥(q,t) (3.67)
where the time-evolution operator has matrix elements

Ul t'5q,) = (e #HE =0 |g) (3.68)

Since this matrix element represents the probability amplitude for a particle to propagate from
points ¢ to point ¢’ in a time t’ — ¢, this is known as the propagator of the theory.

The basic idea behind Feynman’s path integral is to split the finite time interval into infinitesimal
chunks At, such that ¢t = NAt¢ with N > 1. The time evolution operator then factorizes into a
product of time-step operators,

N N N
e #Ht = {e—%“t} . (3.69)

AAssurrAling ‘that the Hamiltonian takes the form of the sum of a kinetic and a potential part,
H =T +V, we can factorize the time-step operator according to

e—EHAL _ o~ i TAL,—E VAL +O(A?) (3.70)

in which the O(At?) error is proportional to the commutator of 7" and V. The truncation of
this power-series expansion in At thus makes sense if At is much smaller than the reciprocal of
the matrix elements of this commutator. Since our number N of time slices can be chosen to be
arbitrarily large, the expansion formally converges.

CMFT(3.2)
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The propagator can then be approximated by
i gAY _iPAL iV _ifPA iV
(gl [e7FHA] 7 1gi) = (gl twe FTMe RV Ay 1y # TR RS gy 37

in which 1 are fixed time-slice resolutions of the identity operator, each being the product of
resolutions of the identity in ¢ and p space,

1, =141, = /dqﬂ|Qn><qn|/dpn|pn><pn| :/dQndpn|Qn><pn‘(<QH‘pn>)

eﬁ(hl)n
/dqndpnlqn><pn\ N (3.72)

in which we have used the convention (plg) = (q|p)* = e~ %% /\/27h. Assuming that T is
diagonalized by states |p), and V' by states |¢)), we obtain

i dq,,d _
(arle F g ~ / H B p"ehq"pn<qf|qw><pme FTONAL =iV an-DA gy 1) x

n=1

X (p_1le” #FTPN-DAL= VN -2)At g0 oy 5 |gi). (3.73)

The T and V exponentials are now simple numbers, and can be taken out of the bra-ket inner
products. Substituting again the projection coefficients (p,|gn,_1) = e~ #Pr9—1/y/27h in this
equation, we get

dpn ,ZA n+1 any
(asle™#)q) / Hd% T (Tt 1) +V (@) =P Naw—aro—a;- (3.74)

This is exact up to corrections of order [1', V]At2/h2.

The remarkable thing about (%%hat the left-hand side, a quantum-mechanical transition
amplitude, is expressed purely in terms of (an integration over) classical phase-space variables
Zp = (Gn,pn). The constant A, and the fact that we are summing a complex-valued integrand,
are the only leftovers of the original Schrgdinger time evolution equation.

Let us now briefly discuss the behaviour of the integral @3_5% he first thing to notice is
that rapid fluctuations of the arguments x,, as a function of n are strongly inhibited (since the
integrand is oscillatory). Contributions for which (gn+1 — ¢n)pn+1 > O(R) tend to cancel each
other because of destructive interference. The only contributions which survive are from paths
which are smooth in space-time, which allows us to take the limit N — oo (keeping ¢t = NAt
fixed) and rewrite the product of phase-space integrals in terms of a path integral: the set of
points {z,} becomes a curve z(t), and

t
dt’ dn+1 — Qdn Oval— =l
_>/0 ) AL = Opqle=t, = qly=t,,
T(pn+1) + Vign) = T(ple=t,) + V(gly=,) = H(x|r=,) (3.75)

i.e. the classical Hamiltonian. Then,

. dpn
lim /H dqn 27rﬁ( Man=a;,q0=a: /Dx Na(e)= a5,q(0)=q; (3.76)

N—o00
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defines the path integral measure. Finally, one gets for the propagator

.t
_if 2 .
(qrle”#q;) =/Dw exp [h/o dt'(pg — H(p, )| lat)=as.a(0)=a: (3.77)

which is the Hamiltonian formulation of the path integral.

In the specific case of free dynamics, 7' = %, we can explicitly perform the (functional) Gaussian

integral over momentum and obtain

i 17 i t ’ _ i t ’ i_ .
<qf|e_ﬁHt|qi> = /D:z: e~ Jo dt'VI(a) o= fo dt' (35 pQ)|q(t):qf7q(O):qi (3.78)

i [* . i .
= /Dq exp [h/o dt,L(QaQ)} |q(t)=qf,q(0)=qi = /Dq exp {hS[QvQ]} |q(t)=qf,q(0)=q1' (3'79)

with L(q,q) = %QQ — V(q) is the classical Lagrangian, Slg, ¢| is the action functional, and

N \ V2 N1
2o i () o 350

is the functional measure of the remaining integral.

Therefore: a quantum mechanical transition amplitude has been expressed in terms of a path
integral through phase space or coordinate space, weighed by the classical action. This is Dirac’s
‘sum over histories’ idea, pushed by Feynman.

tegration] Starting from , suppose that the vector v parametrizes the weight of a real
scalar field on the sites of a one-dimensional lattice. In continuum limit: set {v; } becomes a func-

tion v(x) and the%jxﬁij becomes an operator kernel or propagator A(z,z’). Natural

generalization of

Gaussian functional inte%é;ﬁupplement to PRELIMINARIES on Gaussian in-

/ Do(z) exp {—; / dedz'v() Az, 2 )o(a') + / dxj(x)v(x)}
= (det %)-1/2 exp [; /dxd:r’j(:r)A_l(%m’)j(:r’)} (3.81)
where the inverse kernel satisfies
/ da' Az, o)A~ (2, 2") = 6(z — 2") (3.82)

so A71(x,2") is the Green function of the operator A(x,z’).

) 3.14) |
Equation @ﬁerahzes to
3.16)

and (%@erahzes to

(v(xr)v(x2)...v(T2n)) = Z A Y wp,, py) e AN @0y, s Tk, ) (3.84)

pairings

(v(@)v(a")) = A7 (z,2") (3.83)

CMFT(3.6)

CMFT(3.7)
CMFT(3.8)

CMFT (3.20)

CMFT(3.21)
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The path integral for a free particle

For a free particle H= %7 L= %(}27 we have

N/2
. . d/m L
Greelar. ait) = (agle™#57'];) = Jim (mm) / qu eF Ji A E )

N—00

We choose gy = ¢; and gy = ¢, with t = NAt. The action can be written

N
m 7@ Qn 1
/ dt’ 2 Z::

Look at the integral for g;:

— Qn— 1

uMz

0 ) oo )
/ dqlez%"Zt ((‘Z2_Q1)2+(q1_q0)2) _ / dq1672;b7gt (2q%—2q1(q0+q2)+qg+q3)
— 00 oo

00 2, 2 .
im + + a3+4q 2 im_ (92—a0)?
_ dq1€2hm*2((ql_qo2tm )2_(qo2<12 )24 2790 _ I(—ﬂ)e%m 92 240

hAt
. 1/2

2mihAt / im_ (a2—30)?

= e2hAt 2
2m

Now look at the integral for gs:

2
/ dQQGQHAt (45=42)"+5 (02-90)%) / dqge%m (243 —a2(23+q0)+a5+2)

o0 2
; 2¢3+ 2q3+a0\2 , 2, 4
= / dgse iRy (5 (q2— 21302 - 5 (243 7090)2 442420 )

oo

. 1/2

_ (QWHZAt*Q) 627{&,(—%(QS+QO/2)2+Q§+§)_
m 3

2
But we have —%(q;; +q0/2)® + ¢3 + % — (‘IS—qu)2 so after the ¢o integral, we have

€ 2hAt 3
m 3

<27rhiAt . 1)1/2 (%mm . 2)1/2 Cim (a3—ag)?

m 2

Carrying on with the gs, ..., qn—1 integrals then gives

N-—-1
(27TFLZAt> 2 <1 )1/2 im_ (an —40)?
* N e 2hAt N .
m

By using t = NAt and gy = qn, ¢ = qo, we thus finally get

m \1/2 )
Gpreeldr: aist) = (%hit) o (ar-a0)®

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)
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The path integral for a free particle: alternative derivation using matrix
Gaussian integration

The action can be written using

N
> lgn—an1)? =g +axv +a" My_1g—2J" - q (3.92)
n=1

where we have defined the N — 1-dimensional vectors
@ =(a .. av-1), J"=(q 0 .. 0 qv), (3.93)

and the matrix (the supindex giving its dimension)

2 -1 0 0
-1 2 -1 0 ..
M= 0 -1 2 -1 .. |[. (3.94)
N (RS O |
0 -1 2

We can calculate the determinant of M easily by for example putting all elements below the
diagonal to zero, adding 1/2 times row 1 to row 2, etc.:

2 -1 0 d -1 0 ..
DetM =Det( 0 2—1 -1 0 .. |=Det|{ 0 do -1 .. (3.95)
0o -1 2 -1 .. 0 0 ds
where ) 1
n
di =2 dpi1 =2 — — = d, = , 3.96
1 ) +1 dn n ( )
and thus
DetMN,1 = N. (397)

The free propagator can be written as

Giroa(dr, gi;t) = lim Nm N/zezé’zt(qﬁw?v) Aﬁl dg, | 29" Aati"q (3.98)
freelds> 4i> N—oo \ 1t27h it "
where m m
=—M = ——J. 3.99
At TN ) (8.99)
3.13
The multivariable Gaussian integration can be performed using rule @Wlding
(27) "7 Det A~1/2e3i AT (3.100)
In view of the structure of J, the only inverse matrix elements we need are
1\ — 1y — DetM™® N -1
(M<N ))1,} = (M(N >)N171,N71 = Det M D = N
)y — Ty — 1 1
(M®™ 1))17}\[_1 = (M~ 1))]\,1_171 = Datdd™ = N (3.101)
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and thus

- 2 1
& (@ av)* + 0w = 45 + 4k — 57 (av — q0)*. (3.102)

Collecting all factors then gives back the previous answer,

J'Mg =

m /2 )2
Giree(ds, 4iit) = (%m_t) e#he (a5 =a1)" (3.103)
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3.2.1 Correspondence between classical and quantum propagators

There is one striking aspect which can be notic ?ggggareful comparison of the quantum free
particle probability amplitude for propagation )

m )1/2 im

Y
Gfree(qf,qi;t)=(27rmt e 2ne (97=a) (3.104)

with the classical one @ (specialized to one dimension), using 7 to denote the ‘classical’ time
interval

1 (ry —1i)?
L0) = exp [T 3.105
plry-7iri;0) [4rDr]/? eXp{ AD7 (3.105)

Explicitly, these expressions coincide under the identification

. h

The factor in parentheses is simply a scale for our clocks. More importantly, what should be
noticed here is that there is a correspondence between quantum propagation in real(respectively:
imaginary) time and classical propagation in imaginary(respectively: real) time. This could have ffusion
been anticipated immediately from the starting point, by comparing the diffusion equation @7

0]
ap(rjﬁ T|Ti7 0) = Dv?‘p(rf7 T|Ti7 0)
with the Schrédinger equation for the free particle,

0 —h?

This correspondence will also manifest itself at the level of general field theory, which will
be treated in the following chapters. The mnemonic trick is that when going from classical to
quantum, one should take 7 — it.
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3.2.2 An integral approximation method

One of the great aspects of the path integral formulation of a problem is that it is readily
adaptable to approximation schemes.

To illustrate the idea, we begin with a very simple case. Consider a function f(x) and the
integral

I[f] = /Oo dre @), (3.107)

— 00

Knowing some features of the function f, what can we say about the functional I[f]? Suppose
that f(z) has a global minimum at zg. The integrand will be largest in the region where f has
this minimum. Expanding f, we get

I[f] :/ dae™ ! (@0) =5 (@=20)*+O((z=20)) — o=/ (=)@, (1 + .. (3.108)

. . 2 . .. [e%} _a,2?
in which a = (%—Qf\wo (since x( represents a minimum, we assume a > 0), G, = f_oo dre 2% =
A/ 27” is the Gaussian integral and ... represent corrections (which can be systematically computed

in terms of fundamental integrals of the form G, = ffooo drx e_%ﬂ”z). Note that the integral

limits can be adapted here: to a certain degree of accuracy, provided the minimum point x¢ sits

in the bulk of the original integration interval and that f(z) becomes sufficiently large away from

xo, the boundaries can be put to £oo. Note that the steeper the minimum of f(z) is, the more

accurate the approximation is. Note also that if f has multiple minima, then one can simply

sum over the Gaussian-like integrals over each of these minima to approximate the full integral.
As an example, we can consider the integral representation of the Gamma function

I'(z+1) = /OOO drx®e™". (3.109)
Following our procedure gives
F(z+1):/ooodxe_z+21n”, fx)=2z—zhnx, To = 2, f(zg) = 2(1 —Inz2),
a=df(@)|ag = 2/2% g =1/2, /27/a =2z (3.110)
We thus directly obtain Stirling’s approximation,

D(z+1) = V2mze?™a=D(1 4 ). (3.111)

This approximation method is also valid when dealing with a complex-valued argument in
the integrand’s exponential. It is generally known as the stationary phase approximation.
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3.2.3 Stationary phase approximation of path integrals

Let us now adapt this idea to path integrals. Consider the functional integral [ Dze Fl#l where

Dz = limy_o0 Hf:]:1 dzx,. As before, we are integrating over a set of fixed time-slice coordinates
becoming a smooth function of time in the limit N — oo, {z,,} — z(¢) with ¢ playing the role of
the former index n. The functional F[x] depends on z(t) at any t.

Evaluating this functional integral in the stationary phase approximation consists is perform-
ing the following steps:

1. Find the points of stationary phase, i.e. configurations Z(¢) such that the functional derivative
of the action vanishes,

dF[z]
ox(t)

2. Perform a (functional) Taylor expansion of F' to second order around Z:

D, F =0«

— 0 Vt. (3.112)

1
Flz]=Flz+y] = Flz] + 3 /dtdt’y(t’)A(t,t’)y(t) + ... (3.113)
where A(t,t") = Lm,h:; The first-order term is zero because of the stationarity condition.
Sz(0)oa(t)

3. Check that kernel A = {A(t,t')} is positive definite (thereby guaranteeing the convergence

of the Gaussian approximation to the functional integral). If so, perform the functional integral

_ i\ /2 CMFTK3.19)
over y, yielding fDxe_F[”] ~ e~ Fl7] det (%) (see eq. (B-31))-

4. Finally, if there are many stationary phase configurations Z;(t), simply sum over the in-
dividual contributions:

L\ —1/2
_ A,
Dze Flol ~ —Flzi] qet | =2 ) 114
/ xe ;e ot |5 (3.114)

To summarize, the stationary phase approximation is based on finding the dominant terms
contributing to the functional integral, including the maximal points and their Gaussian approx-
imation.

Let us now apply the stationary phase approximation to the Lagrangian form of the Feynman
path integral for a single particle. In particular, this converges quickly in the semiclassical limit
when we take i — 0. The dominant trajectory is the solution to the classical equations of motion,
q(t) = qu(t). Defining deviations as r(t) = q(t) — ¢ (t) (assuming that there is only one classical
path) then leads to

<qf|e*%ﬁt|qi>ge%5[qcﬂ/ Dr exp i/tdt’dt”r(t/)(szS[Q]| —a. ()] (3.115)
2h Jo dq(t")dq(t) 1

r(0)=r(t)=0
which is the Gaussian approximation to the path integral.

¢* — V(q), the second functional derivative integral term is

. . _ .2
For free Lagrangians L(q,q) = %

CMFT(3.24)

CMFT(3.25)

CMFT(3.26)
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computed most easily by Taylor expanding the action:

Slal = /dtL(q@) = /dt (%qz —V(q))
= /dt (7;((1?1 + 24 +7°) = V(gar) = V' (qa)r — ;V”(qd)rz) .

1
= S[qd] + /dt (_mdclr - V/(QCZ)T - %T?‘ - 2V//(qu)7"2> —|—

= Slgal - %/dt r()[moZ + V" (qu(t)]r(t) + ... (3.116)

with V7 (qq(t)) = aQV(q”qcz(t)7 S0

q

t 2 t
1 / dt’dt”r(t’)L[Q]szqdr(t”):—1 / dt'r(t)[mdZ + V" (qu(t))]r(t).  (3.117)
2 /o dq(t')dq(t") 2 Jo

Doing the Gaussian integration finally yields the approximation

(agle #1gy) = cistoal |

Dr exp [—Z /dt’r(t’)[ma% + V”(qcl(t’))]r(t’)}
(0)=r(t)=0 2h

. —1/2
— o7 5gel] v 2 "
en det (%h[mat +V (qd(t))]> . (3.118)
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The path integral for the harmonic oscillator

Let us consider a particle in a harmonic potential, whose Hamiltonian and Lagrangian are re-
spectively

~2 2 2
. P mw’ LML, W,
H=— L=—z"— . 3.119
om T2 2t T " (3:119)
The propagator is then
Grolag,aist) = lasle™lqs) = [ Dy kS (3.120)
q(t)=qy,9(0)=q;
where
t m [t
Suald = [ d'Lia.d) =5 [ v (@ - ). (3121)
0 0
The classical path is determined as
qel(t') = q; coswt’ + ( v qi cot wt) sin wt’ (3.122)
sin wit
so the classical action takes the value
Sholgel] = =——— ((q7 + q) coswt — 2q5q;) - (3.123)
2sinwt T :

- emicl
The path integral itself can be calculated most easily using our expression @Wlﬁch is
exact since our Hamiltonian is quadratic (V" = mw?). The deviations from the classical path
can be expanded in Fourier modes

o t/
r(t) = rasin (3.124)
n=1
so we have
P 2. 2
/dt’r(t’) [mop + V"] r(t') = % Z o [w2 - ntgr} . (3.125)
n=1

The path integral over r(t’) then corresponds over a product of integrals over the r,. To avoid
dealing with the details of this transformation (Jacobian, etc), the easiest is to consider the ratio
with the free propagator (so with w = 0) which we have already calculated:

— imt [Wz’_%ﬁ]ri oo 9,01 —1/2 . —1/2
ot - S e (3.126)
[, [ dre” 7503 o5l wPr wt

Using the explicit expression for our free propagator, we thus obtain the exact propagator for
the quantum harmonic oscillator:

mw 1/2 imw 2 2 — 90
Gho(vaQi;t) = (m> eZh:;inwt((qf+qi)Coswt 2‘11¢1f). (3127)
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Chapter 4

Functional integrals

4. The functional field integral

4.1 Construction of the many-body path integral

Let us now generalized the previous chapter’s single-particle ideas to the many-body case. The
basic idea remains the same, namely to separate the (imaginary) time evolution into infinitesimal
time slices, and absorb as much of dynamical phase in a set of suitable eigenstates.

For the many-body case, we shall need a more convenient basis of our Fock space. An appro-
priate basis would be one in which our creation/annihilation operators are somehow diagonal.
We thus need eigenstates of these operators (whether this is even possible will be disscussed
below). Such a basis is formed in practice using so-called coherent states.

4.1.1 Coherent states for bosons
Let us try to find eigenstates of the (bosonic) Fock space creation/annihilation operators a,a'.

N.B.: for fermions, anti-commutation of operators leads to anti-commutation of eigenvalues...
we shall get back to this problem later.

Any state in Fock space, including the desired eigenstates |¢) of bosonic Fock space operators
a,at, can be represented as a linear combination of our occupation number states:

o (gl yne
()™ (a3) ...|0) (4.1)

n1! TLQ!

[y

o) = Z Chins,... 1,102, ), In1, no,...) =

ni,na,...

with |0) the vacuum state.

An extremely important point to emphasize is that it is perfectly sensible to have a generic
state |¢) contain a superposition of basis states with different numbers of particles. This is in
fact crucial if we are to find an eigenstate of our creation/annihilation operators. Namely, if the
minimal number of particles in |@) is ng, then the minimum number of particles in ag |p) is ng+1.
Therefore, if our vacuum is well-defined and there is no upper limit to the number of bosons we
can introduce to the system, the creation operator a' cannot have an eigenstate.

4-1
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However, under those circumstances, annihilation operators a; do possess eigenstates. These
are known as bosonic coherent states, and are of the form

¢) = exp [ZWJ] |0) (4.2)

with ¢ = {¢;} a complex vector (i as usual labelling our single-particle states). That this state
diagonalizes the annihilation operators can be verified explicitly:

sal
o) = e |30} 0)= e |32 6y0] | e )

i
= exp | Z—al exp | Z )"=10)
— o L. mz‘z (a)"10) = 61l9). (13)
n=0
We thus indeed have
ail¢) = ¢il¢), Vi (4.4)

so these coherent states in fact simultaneously diagonalize all annihilation operators. By taking
the Hermitian conjugate of this relation, we get

(#] = (0] exp Zﬁgiaiv (dlal = (9]¢ (4.5)

so our (dual) coherent states also diagonalize the creation operators a;r from the left (they are
left-eigenstates of ag). Here, ¢; = ¢.

Although our creation operators aj are not diagonalized by our coherent states, we can still
compute their action on such a state:

a0} =al exp | dsal| 00 = exp | osal | ale
J J#i

= exp quja;f O0g, €
J#i

0) = D, [)- (4.6)

This is almost an eigenvalue equation; instead of replacing the quantum operator by a scalar
value, we have simply replaced it by a differential operator on a scalar value. The crucial this is

that the ‘quantumness’ of the operator h. 'ﬁp e la.a)
One can easily check that equations an are consistent with the canonical com-

mutation relations:

[ai, a]|¢) = aiall¢) — afai|d) = aidy,|6) — aldil6)
= 0y, ai|¢) — ¢ia;|¢> = 0y, 0il®) — 0:0]¢) = 6i5|P). (4.7)
The overlap between two coherent states is given by a short explicit calculation as

(0]¢) = (0]eX 02| g) = €22 0191 (0]g) = 24 094 0]0) = €21 Oi¢ (4.8)

CMFT(4.1)

CMFT(4.2)

CMFT(4.3)



(0lg) = exp [Z 9i¢i] - (4.9)

The norm of a coherent state is thus
(¢lg) = exp lz ¢i¢i] (4.10)
i

Strangely enough, we can easily see that our coherent states diagonalize a; irrespective of the
choice we make of the scalar vector ¢. We thus seem to have a (multiple) infinity of eigenstates,
in other words: too many. In fact, coherent states form an (over)complete set of states in Fock
space, and one should compensate for this overcompleteness by properly defining our resolution
of the identity operator. The correct expression is

[T
; ™

with do;d¢; = dR¢p;dI¢; and 15 is the identity in Fock space. To prove this relation, it is suffi-
cient to consider commuting it with any annihilation operator a;: defining d(¢, ¢) = [[, dpide; /,

aily = ai/d($,¢)672i$i¢i
— - [ d(G.9)(05,”Ze5%)
= [ d(6.0) =56 0las = 15 . (4.12)

(4.7)
Taking the adjoint of this then shows that the LHS of @Tﬂs@ commutes with the set of creation
operators. Since any state in Fock space can be obtained by summi (Llinﬁar combination of
(products of) creation operators acting on the vacuum, the LHS of %ﬁst thus indeed be
proportional to identity operator. To compute this proportionality constant, one can simply
consider the vacuum-vacuum matrix element

/ d(, )¢+ 59 0]6) (6]0) = / d(F, g TP = 1, (4.13)

3.11)
where the last equality follows from ﬁi

4.1.2 Coherent states for fermions

o) (¢l = 1r (4.11)

o) 6] = / A, )e™ T 50| 8) (9]
o) (9| = / d(B, e~ T: Fios

¢)(95,(41)

Much of the coherent state formalism readily generalizes to fermions. In fact, the situation is in
many aspects much simpler with fermions, though with a few peculiar features.

Let us thus being by supposing that our fermionic annihilation operators possess coherent
states |n) such that

agln) = niln) o (4.14)

with n); the eigenvalue. An important difference with the bosonic case @Tﬂﬁ’a‘u we now have to
be consistent with the anti-commutativity of fermionic operators. Strangely enough, this means
that to ensure consistency, the eigenvalues n; have to anticommut

MM = — MM Vi, j (4.15)

... by which we here mean that they pick up a minus sign under interchange, not that they know anything

about A.

CMFT(4.5)

CMFT(4.6)

CMFT(4.7)

CMFT(4.9)

CMFT(4.10)

CMFT(4.11)
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These thus cannot be ordinary numbers. In fact, we take n;, i =1,..., N to @el gﬁsnerators of
a Grassmann algebra A, their commutation relations being deﬁned by

Remarkably, these numbers are even easier to do calculus with than the ubual real or complex
numbers.

The first important property of Grassmann numbers is that they are nilpotent, n? = 0.
Functions of Grassmann numbers thus involve only the zeroth and first power of each generator,
e.g. f(n) = f(0) + f'(0)n.

Differentiation is defined by the relation

On:nj = dij (4.16)
Note that the differential operator must also be anticommuting to ensure consistency,
Oy, O, = =0y, Oy, (4.17)
A general function is thus defined via a Taylor expansion,
1 of
yaens g s ey e A 4.18
f&r, &) = Z Z ol E, %én & E1s s (4.18)

n=0141,...,i,=1

Integration is defined symbolically as

/dm =0, /dnmi =1 (4.19)

You shouldn’t think of this as a ‘Riemann sum over Grassmann variables’, but merely as an
operator on elements of the Grassmann algebra. In fact, the remarkable this is that due to this
definition, Grassmann integration and differentiation are effectively identical. Considering their
action on a generic function of a single variable, we indeed see that

[ns = [ anz© + £ = £10) 0,50, (420)
The reason why we have introduced Grassmann variables is simply that they allow us to

construct fermionic coherent states. For consistency, we first require that Grassmann numbers
anticommute with fermion operators,

{nia;} =0. (4.21)

(note that by extension, we also require that the differential J,, and integration elements dn;
anticommute with a;, Z) It is then straightforward to see that

n) = exp [ Zm ] (4.22)

are fermionic coherent states. Checking explicitly,

0) = expl...]a;(1 — n;al)|0)

t

mial

ai|n) = exp g 77] a;e” M
J#i

= expl..]m|0) = exp[...]ni(1 — mia])|0) = min). (4.23)

CMFT(4.14)

CMFT(4.13)

CMFT(4.15)

CMFT(4.16)

CMFT(4.17)
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Taking the adjoint,

(n] = (0| exp [ Zazm] = (0] exp lz mai] . (4.24)

There exist a number of important differences between fermionic and bosonic coherent states:
1) the Grassmann vector elements 7; specifying the bra (7| are not related to the n; specify-
ing |n) via some kind of (Grassmann) complex conjugation. They are instead to be seen as

strictly independent variables.

2) The Grassmann version of the Gaussian integral is simply

[ dnanem = [ dnan(1~ ) = [ ananyn = [ dng =1 (4.25)

and does not t&m{. a factor of 7 like bosonic Gaussian integrals. The measure of the fermionic
analogue of %_d&es not contain 7 in the denominator.

To summarize, the definition and characteristics of bosonic and fermionic coherent states are
(using our statistical factor ¢ = +1 for bosons/fermions)

Definition 1)) = exp [CZQ[)MI] 0) (4.26)
Action of a;  a;|1h) = ;|v), l (¥la; = 85, (V| (4.27)
Action of af  af|v)) = ¢y, [¢), (Wlaf = (¥ (4.28)

Overlap  ('|¢)) = exp [Z&;wi] (4.29)
Completeness / A, p)e™ i Vi) (] = 15, (4.30)
i = { gt e

. T(4.3) T(4.4) T(4.5) (4.6) (4.7) o
Exercise: show that @m @m @m @Wi @mry over to fermionic

case.
e Show that (n|al = (1|7
Answer:
(lal = (lexp | an;|al = (0] H(1 —a;ny)al = (0](1 — ain)al [[(1 = a;7))
J ] J#i

<0|aia;r77i H(l —a;n;) = (0] H — a;n;)m = (n|7;- (4.32)
J#i



4-6 CHAPTER 4. FUNCTIONAL INTEGRALS

e Show that af|n) = —a,,

n) and (n|a; = Oy, (nl.
Answer:

all) = al(1 = ma}) T[]0 = ma)|0) = 0, TL( = nya))lo) = ~0y. ).

i#i
(nfa; = (0] H = a;17;)(1 = as;)a; = (0] H(l — a;i;)a
J#i J#i
= (0] H — a;7;)(=05,(ain;)) = (0] H — a;7;)05, (1 — aif;)
J#i J#i
= 05,(0] H — a;1;) = O, (). (4.33)

e Show that (n|v) = exp Y . 7iv;.
Answer:

=(n H(l — v;a})|0) = (] H(1 + Mivi)[0) = exp Zﬁi”i- (4.34)

e Show completeness. To prove this, show that the commutator of a,a’ operators with the res-
olution of the identity vanishes.

Answer:

a}l; = /dnn — 2 mm
S
[ e
w1y = [dmae = = [dame S
= [ d@n-one E ol = [ d.me ST )y, (n

/ d(i n)e= S i nla; = 17 aj. (4.35)

| = /dnn =Simmg, ool

| = / (7, m)igje= X

n{nlal = 15 af.

) (nl

Grassmann Gaussian integration Grassmann Gaussian integration obeys the simple iden-

tity
/ didne ™ =a,  aeC. (4.36)

Note that there is no issue of convergence here, irrespective of the value taken by the Gaussian
parameter a.
This Grassmann Gaussian integral has the following multidimensional generalization:

J 6008 = e (aa)
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where ¢ and ¢ are N-component vectors of Grassmann variables, the measure is d(¢,¢) =

Hil\il d¢;de; and A can be an arbitrary complex matrix. Again, there is no convergence issue.
The proof is left as an exercise.

F%%%r 11é§eful identities are readily obtained. First, we can write the Grassmann version of

/d(q_ﬁ, ¢)67¢§TA¢+DT'¢+J7T'U — det Ae? ATy (4.38)

The proof is simple and uses the fact that Grassmann variables can be shifted in integrals:

[dnf(n) = [dnf(n+v).

Further integration formulas: define

(.)= det A1 /d(qg, (b)e_‘gT‘M’(...)7 (4.39)
4.22
one gets, by expanding both sides of @(,7)
/d((ﬁ, d))e_éTAd)(... —|— Dj(bjglgil/i + ) = det A( + DjA;Z-lVi + ) (440)
and therefore -
(d501) = A" (4.41)
This generalizes to
(P Do B, Py oo Bigbiy ) = Z(—l)PA;jiPI AL (4.42)

P
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Connection between the path integral and statistical mechanics

For the moment: forget about QM, consider classical 1D continuum model of a flexible string,
held under constant tension and confined to a ‘gutter’ potential. Assume that the mass density
of the string is very high (kinetic energy is negligible). Transverse fluctuations: penalized by line
tension and external potential. Assume that transverse displacement u(x) is small.

Potential from line tension: 6Vten510n = a[(dx + du?)'/? — dx] ~ odxz(d,u)?/2. Integrating
over length of string: Viapsion[0zu] = 35 fo dzo(0,u(z))?.

Potential from external potential: Viyternallt] = fOL dzV (u(z)).
Total energy of string: V = Vionsion + Vexternal = fo dz[5 (0yu)* 4+ V (u)].

From general principles of stat mech: equilibrium properties encoded in partition function
Z = Tre V. Here, Tr — | Du so the partition function is

L
Z= /Du exp l—ﬁ/ dx (g(agcu)2 + V(u))
0 2
Comparing with %?'78)

(arle” 71 g;) = /Dq exp {; /Ot dt’(%q2 - V(q))] (4.44)

(4.43)

with L(q,¢) = 2¢* — V(g): let 2/ € [0,L] be an imaginary time 2’ = 7/ = it’. We have
L =7 =1it. Then,

L [arcre vyt -1 [ ar o - via)

%‘hl/on v (4.45)

2m

CMFT(3.22)

CMFT(3.8bis)

where in the last step we have performed a Wick rotation of the integral interval by ™ / 2 i IE gg?a 22)

complex plane. Provided nothing goes wrong with this black magic, the partitio

of the classical system thus coincides with the quantum mechanical amplitude va uated
at imaginary time t = —it = —iL with H = % + V(g) and we identify the tenswn with the
mass, 0 = m, and Planck’s constant with the temperature, h = 1/4.

This generalizes to higher dimensions: there is a close analogy between QFT in d dimensions
and classical stat mech in d + 1 dimensions.

Transformation ¢ — —i7 is called a Wick rotation. Imaginary time representations of La-
grangian actions are called Euclidean, whereas real time forms are Minkowski actions.



4-9

4.2 Field integral for the quantum partition function

According to the basic principles of (quantum) statistical mechanics, the finite temperature
equilibrium physical propertires of a generic system are obtained from the quantum partition
function (namely the trace in Fock space of the Gibbs distribution)

Z = Tr e PH-N) = N (e AH-1N) |y, (4.46)

Here, 8 = 1/T is the inverse temperature (we set kg = 1), p is the chemical potential, and sum
over a complete set of states. For the moment, we don’t yet specify whether we’re working with
fermions or not.

In addition to the partition function, we usually need to know correlation functions. Later
on, we’ll see that these can be obtained from a path integral similar to that for the partition
function.

We begin by introducing a resolution of the identity in terms of coherent states:

2= [d@e S5 S ) wle P ), (4.47)

n

Our next step is to get rid of redundant sum over [n). We here have to be a little bit careful
with the (possibly Grassmann-valued) state overlaps and their sign changes upon reordering.

For bosons, we simply have: (n|i){y|n) = (|n)(n|p).

For fermions, the general result is: (n|y)(¥|n) = (—¢|n)(n|y) with (—¢| = exp (=, ia:),
since Grassmann variables anticommute with Fock space operators.

e Exercise: Show that (n|¢)(|n) = ((y|n)(n|y).

Answer: we have that |n) = a;rl..ajn|0> and (n| = (0|a, ...a;, (omitting normalization). Then,
(nly) = (Olai,...ai, [¥) = O, .40, [¥) = s, .. 0s, -
Wy = (Wlal ..al |0y = (W[, .., [0) = Py, .y, -
(n[y)(¥|n) ¢in_---wi11;i1-~-1?in = wililjil-_--winizin_
= (Ci,¥i,)-(Ci, i, ) = (C¥iy ) (C¥i, )i, - 0iy = (G |n)(n|ep).  (4.48)

Using our sign factor ¢ (1 for bosons, -1 for fermions), the general expression is thus

Z= / A, e 50 S (CplePE-RO |y ()

= [ ppe BB gyl sy, (4.49)
This can now be used for constructing the path integral.

Let us assume that our Hamiltonian contains up to two-body terms only (as will be seen later,
the generalization to higher-body terms is completely straightforward):

fI(aT,a) = Zhija;raj + Z Vijkla;ra;r-akal. (4.50)
ij

ikl
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This is a normal ordered form of the Hamiltonian. This will be crucial now: coherent states
are eigenstates of the annihilation operators, and therefore (right-)diagonalize them all.

Following the path integral logic, let us now divide the (imaginar &1 g}lterval B into N
segments and insert coherent state resolutions of the identity into see a more detailed

derivation on the following page):

N
Z:/ H A", pYe 8 Tazo [671 @M=" T HHET WM —uN @™ )] (4 51)
PO=CPN 0=y

where § = 3/N and (similar equation for N (¢, v"))

H(al )
% thﬂl)ﬂb + ) i) = H(, ).
ijkl

(3.5) (3.6)
Sending N — oo, and taking limits as for (%m @W get the continuum version of the
path integral:

) i ) s ) _
2= [DEwe o sgl= [ dr[bo+ H@Y) - NG)]  @52)
where D(v, 1)) = limy o0 ny:l d(x™,9™) and the fields satisfy the boundary conditions

$(0) = ¢y (B), ¥(0) = CY(B). (4.53)
Written out explicitly, the action for Hamiltonian @(4{8*26)

B
S :/0 dr 2@1(7)[ )(51J + h” '(ﬂg + szﬂelqybz %( )wk(T)wl(T) : (4'54)

ijkl

(4.28) (4.30)
Equations @m @H@%e the functional integral in the Euclidean time representation.
A more practical rewriting is to use Fourier transformation from (imaginary) time to (imaginary)

frequency,

) = S ey Zl/ﬁmwwkw”
- \/B — n b n — \/B 0 )

i)=Y, = [
- \/B — n b n — \/B 0 b

2nnT, bosons
o { (2n+ 1)7T, fermions }n €Z (4.55)

the latter being know I;ilezg]}/[atsubara frequencies, their quantization coming from the
periodicity conditions %7

4.28 (4.30)
Using this representation in @mz %get Z = [D( P, 1h)e —SY] with D, 1)) =
L, d(¥n, %) defining the measure. The action becomes

T . 1 -
1/1] = Z ¢’L’I’L [(_ZWTL - N)éz] + hz]] ’(/}jn + B Z V;jk:lwinl’(/}jnzwkngwln46n1+n2,n3+n4
ij,n ijkl,{n;}
(4.56)
where we have used foﬁ dre~iwm—wn)T — B6m n. This is the frequency representation of the
action.

CMFT(4.27)

CMFT(4.28)

CMFT(4.29)

CMFT(4.30)

CMFT(4.32)
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Recap of derivation of (4.27)

2= [ (G, p)e S gyl ) (4.57)

Resolution of identity:

1= [ dd.w)e S5 (4.58)
Split 8 interval in N pieces:
e~ BUH—1N) _ 675(1{17“1\7)1N_1ef5(ﬁ7"N)1N_2...11675(H7“N) (4.59)
so (writing the earlier 1 as ¢°)
N-1 ) o o
2= / [T d(m, gmyer =nme S0l (g = yOlem T mM N =1y (N =1 00y =2)
n=0
(N2 o) (W e ) 4. 60)
But o - B
<wn+1|e—6(H—;LN)|wn> _ e—é(H(wnﬂW;)_ILN(WLJrlﬂpn))<wn+1|wn> (4.61)
and -
(Prttygr) = ez (4.62)
so we get

N-1 No1 ) N 7
Z= /QZN = C&O H d(wn7wn) exp {_ Z W? - w?+1)w? -0 Z [H(¢n+17¢n) _ /,LN('(/Jn+1,¢n)}

n=0 n=0

YN =gy "
Defining 0, = ¢ — 4P and D(¢,¢)) = limy HnN:_01 d(yp™, ™), we arrive (after a simple

partial integration in 7, and neglecting higher-order differentials in the limit N — oo) to the
final form of the imaginary-time functional field integral:

z = [D@wes,

B B _ _
St = [ ar [Zw)mm+H<w<7>,¢<7>>uN<w<T>,w<T>> - (464

]54.63)
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4.2.1 Partition function of the noninteracting gas

Consider @%ﬁ
Ho(,40) = > i Ho ity (4.65)

i,
Diagonalize Hy by unitary transformation U, Hy = UDUT, D = diag(ey, ...). Change integration
variables UT1y) = ¢. Action becomes

S = Z Z d_)an(_iwn + ga)¢an7 §a =€a — p- (466)

The partition function decouples,
z=]]z. (4.67)

with
Z, = /D(q_ba, o) 2on San (Tl tl)ben — TT [B(—iw, + &)]° - (4.68)
The free energy is thus a simple sum,
F=-TmZ=T0Y In[B(—iw, + )] (4.69)

(4.34)
Matsubara frequency summations Summations like the one in @W frequently en-
countered in this business. There is a standard trick to perform them. Consider a single Mat-
subara sum of some function,

S = Z h(wn,). (4.70)

The basic idea is to introduce an auxiliary function g(z) having simple poles at all z = iw,,. The
Matsubara sum is then transformed into a sum over residues of hg.
Two common choices for ¢ (infinitely many choices are possible) are:

—2— bosons B coth 22
_J &= _ cot ,  bosons 471
9(2) { eﬁip fermions 9(2) { étanh %, fermions (1)

Explicit check: for bosons, g(z) = 63275_1 around 2z = iw, = 22”7" goes like Blefz—iwn)+hiwn

1]71 = pleflEwn) —1]71 ~ L 50 we get a simple pole with residue factor 1. For fermions,

Z—1Wn
9(2) = 2 avound = = iw, — 12T goes like Blefle—iun) e | 1] = _glebleuan)
1]7! ~ —=L— 5o we get a simple pole with residue factor —1.

Z—iWnp

: . . ig:Matsubara_gamma
Consider now integrating hg along the contour 7, (see figure ﬁ] il; Teft)

fig:Matsubara_gamma ‘

CMFT(4.33)

CMFT(4.34)

CMFT(4.36)

CMFT(4.37)
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Poles of g

~
~

S~

Figure 4.1: Left: ~; contour. Right: 75 contour, obtained after expanding.

‘We have on the one hand that
¢

Y1

57 dzg(z CZ Res [g —i2)]| 2=iw,, Zh wn) =S. (4.72)

We can however inflate the v; contour towards infinity. In the case where h(—iz) has isplat gbara amma
%Ji[ right)

singularities at the set of points {zx}, this yields the new 7o contour (see figure
composed of a contour at infinity with additional contributions from the poles of h. If the

contour at infinity has vanishing contribution, we therefore obtain

¢

27

Si

Y2

dzh(—i :{Z Res [h(—i2)g(2)].==, (4.73)

so the infinite sum over Matsubara frequencies becomes a sum (often finite) over residues at

poles of the h function.
Example: let h(w,) = ﬁ
to 0 at |z| = oo. h(—iz) has a simple pole at z = & (for § — 0). Thus,

B

Zh(wn) = —( Res[g(2)h(—i2)]|,=¢ = —(@(—CT) =
so we get
1 | np(eq), Dbosons
B CTZ iy — &a { np(ey), fermions
with
1 1
n5(€) = w1 nr(€) = 5 +1

being the bosonic and fermionic occupation factors respectively.

eBE _ ¢

with some regulator 6 > 0. The product h(—iz)g(z) decays

! (4.74)

(475)

(476)
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We can also look at the free energy F itself. For that, we have h(w,) = (T In[8(—iw, + £)].

The function h(—iz) = (TIn(§ — z) has a brangh ot along the real axis on the interval [€, oof.

The contour thus needs to be bent as in figure

Branch cut of h

Figure 4.2: Matsubara contour for the free energy of the noninteracting gas.

‘fig:Matsubara_for_F‘

so we can write (choosing g(z) = %)

o 3
S = 2£7rz </§ dzg(z)In[€ — z — 6] + /OO dzg(z)In[¢ — 2z + 25]>

T [e )
e / dzg(2) (N[E — = — 0] — ¢ — = + 6]) (4.77)
i J_
Using the fact that g(z) = 3527 = (0. In(1 — (eP#) and integrating by parts (boundary terms
vanish), we get
(T /°° s 1 1
b In(1 — # — : 4.
omi | BTN e T e (4.78)

Now use identity (see (CMFT(3.58))) 7755 = —imd(x) + P+ to obtain
S = (Tl — ¢e ") (4.79)

so that the full free energy finally reads

F=¢TY In[l—¢e ] (4.80)

which is the familiar expr )
From our free energy %W can for example now calculate the particle number:

N=— 5i Tngn —iwn +&a)] - (4.81)

Using 9¢/0p = —1 immediately yields

NZT(Z#—F&I :ZnB7F(5a). (482)

a
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Problem 4.5.6 Pauli paramagnetism

5 . . 1
H,=—puoB-S, S=>" ialgam/amﬂ (4.83)

aoo’

Here, a is an orbital quantum number and pg = e/2m is the Bohr magneton.

Two-fold spin degenerate single-particle band of free electron states. Both bands are filled
up to chemical potential p. Switching on of external field: degeneracy lifted, two bands shift in
opposite directions.

a) coherent state action Consider H = Ho+H, with Hy = > o @) EaGas the non-magnetic

part of Hamiltonian. Integrate out the Grassmann fields to obtain the free energy F' as a sum
over frequencies.

Answer : using quantization along field axis,

. 2 B
H = Z a’j)zn |:2Z:n - ‘LL(;(O-Z)UU] Qoo (484)
(4.32)
Action: use @Wﬂa hij = €i6;; and Vi = 0. Denoting e, — pt = &,
- _ B
SWM/J] = Z waan |:_7;Wn + ga - /1/02(0_z)00:| waan (485)

aon

Integrating over ¢ (keep in mind normalization of measure, as per footnote 11 on p.169 of CMFT:

d(th, Pn) = Bdibndiy (F), d(n, n) = A dibudiy (B), 50 that [ d(th,, a)e ¥ = (Be)¢ ).

zZ= /D(&aw)eisw’w] = H /d(iz)admwaan) exp |:71Z_)aon <iwn +&a — @ ) %gn}

9 ag
2 2
= Hm l:ﬁ(_iwn + ga - ‘UOQBU):l = 1.;[ |:52 l:(_iwn + ga)Q - /J'Of :|:| )
F=-ThZ=-T)» In [ﬂ2 [(—iwn +&a)’ — “352“ (4.86)

b) low-temperature susceptibility The magnetization is given by the derivative of the free
energy w/r to the field, M = dgF. The susceptibility is the rate of change of magnetization w/r
to field at zero field, so

X = —0%F|p=0 (4.87)

First derivative:

—1
M%BT

2
_ ntoB ; 2
R M

an

‘= _§ Y (s + &) 2 =D halwn). (4.88)

an
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. ) u2T 1 MFTK4.38)

The function h,(—iz) = — =5 (==3.7 has a pole of second order at {,. We can now use ({L.73):
2 2 20880 2
i N £ N ol o L
Res [h(=i2)g(2)-. = —"500'(6a) = =50 s = (o) e,
13 p o[>
X=—CY Res [h(=i2)g(2)]o=e, = -5 > nléa) = =5 [ dep(E)np(e —p).  (4.89)

Since limy_,o np(e) = 6(—¢), we have limp_,o nn(g) = —d(e) so

2
X =70 %p(u) (4.90)
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4.5.7 Electron-phonon coupling

Hy, = quagjaqj + cst. (4.91)
j

Phonon dispersion relation depends only on modulus |gq| = ¢, index j refers to three possible
phonon oscillations in space.

Electrons in medium: sense induced charge p;ng ~ V - P where P ~ u is the polarization
generated by local distortion u of the latt] (( (Q) is the 3d displacement). In terms of phonon
creation and annihilation operators (see )

1 iq- ej 1
u(r) = 737 %: Ty, U = W(aq,j +a' ;) (4.92)

with e; the unit vector in direction j.

Electron-phonon Hamiltonian:

Hei—pn ZW/ddm( r)V-u(r) / Z Mg Uqg ez(q1+q2)rZZQ2,g

q1,92

= ryz Wn_q(aq] + aqu) (4.93)

a,j
with 71(r) = ¢! (r)¢(r) the number operator, whose Fourier transform (using ¢(r) = 77z Y. €% ¢q)

N 1 iq-r
fia = a7 ddre'dTi(r) =

Lgd/Q Z qucq2 /ddrez(q qit+az)r _ Ld/2 ch+qck (4.94)

q1,92

d
L 6‘]17‘12,(1

is the electronic density in Fourier space (we neglect spin for simplicity).

a) Formulate the coherent state action. Introduce Grassmann field ¢ for electrons, and
complex ¢ for phonons. Coherent state PI:

Z= /D[?Z,?Z)]/D[(];?Qﬁ] exp [—Sel[i/;’i/}} - Sph[gaqs] - Sel—ph[&ﬂ/’:‘ﬁ@] )
ph ¢ ¢ Z ¢qn] —iWw, +wq)¢qn]7

a,n,j

Sel—Ph W_}a ’l/}a an ¢] =7 Z (anijﬁp—q—n(gﬁqnj + Q_s—q—"j)’ (495)
j q

with pg = zam 2ox Vkta¥i:
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b) Integrate out the phonon fields and show that an attractive interaction between
electrons is generated. Effective action:

/'D[(;S, (b]e—Sph[¢7¢]—Sel_ph[¢7¢,¢7¢] _

:\/D[&Qﬂ €xp Z¢qng — W, + wyq ¢qn] VZ 1/2P q— n(¢qng +¢ q— ng)

qnj

= /D[Q_ﬁ, (b} €xXp - Z [@Eqnj(_iwn + Wq)¢qnj + ﬁ (P q—n¢qn] Q_Sqnqun)}
qnj

- - 1Yq; P—q—n
= H/d(¢q7zj7 ¢qnj) exp {_ |:¢ql‘lj - (2mw ])1/2 —iw q+ w :| X
q n q

anj

. 2 2
. 1Yq; Pan V74 1
X (— ; X g
(=it +w) {¢>an + (2mwg)/? —iw, + wq} } P {meq —iwy, + wy PanP=a-n

72 q2 1
= —_— - —a— 4.96
exp om Z W —itwn + Wy PanP—-q—n ( )
qn
so the effective action for the electrons becomes

2 2
7 7 v q 1
S&f[%d’] = Sel[i/fﬂﬂ ~ om Z qupqnp—q—n~ (4.97)
qn

Only the symmetric term survives:

Wq . .
ot 'L o2 Foz SO We can write

2 2

Sefilth, ¥] = Selld %] = 5~ >~ —"— panp-a-n- (4.98)

2m = n T wg



Chapter 5

Perturbation theory

5. Perturbation theory

5.1 General structure of low-order expansions
5.1.1 Example integral

Consider

* d 22 _
= et 51

—oo V2T
This is like a particle in a harmonic potential, with an anharmonic correction. For small ¢ < 1,
we can try to expand in g:

I(g) = g"In, 9"l = =9) / Ll (5.2)

n! Lo V2T

n=0

But we know from our Gaussian integrals that

[T e U [T de g, d 1
I(a):/_oome =7 (x>a—/_oo\/ﬂe x° = 2dal(a)—

(), = 4%1(@ = % (zim) = 2%n di:n I(a)|a=1 = (4n — 1)(4n — 3)... = (4n — D! (5.3)
50 n— n 4ne—4n 1/2 n
g1, = (g =Dt o g TR L (s (5.4

Problem: expansion in g small does not exist ! Series begins to diverge around order n ~ 1/g.
N.B.: what is the radius of convergence in g 7 g > 0: I(g) converges. g < 0: I(g) is divergent

! Therefore, the radius of conver AtY 8!
More ‘physical’ picture: use (%,7

OO dx _z2 4n
e T = g 1=({n-1 5.5
/_oo V 2 . . ( ) ( )
all pairings

Perturbative breakdown of expansion: competition between smallness of g and proliferating
number of ‘interaction pairings’.

5-1
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All is not lost, however. Infinite series is divergent, but partial resummation I, , (g) =
Yopmar g™I,, can give an excellent approximation to I(g). To see this: estimate the error

Nmax
n
1(g) = Y g" | < g™ | o~ (T e, (5.6)
e
n=0
Vary with respect to ny,4, = n:
nlng+nlnn—n d
ennd %%(...):lnnglnn:O%nopt~1/g (5.7)

so the error is optimized for n,,q. ~ 1/g. Making this choice, the error scales as e~ 1/9. For
g = 0.01: error is of scale e71%0 ~ 10739, For g = 0.3, scale is e~2. Then, perturbation theory is
bad already at about third order !

Message: perturbative expansions are not rigorous Taylor expansions. Rather, they are
asymptotic expansions.
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5.1.2 ¢* theory

Simplest interacting field theory:
—S[4] a. |1 2 m? 2 4
Z = | Dge ) Slgl = | d*= 5(6@ + 7¢5 + 99 (5.8)

Appears in many applications:
1. d-dimensional Ising model close to critical point

2. more generally: classical stat. mech. systems with a scalar order parameter: S[¢] is the
Ginzburg-Landau free energy functional.

Nomenclature for perturbation theory:

De(...)e 519
()= 1Bel)e 77 (5.9)
[ Dgpe—514l
is called the functional average or expectation value of (...). Similarly, the free average is
defined as Sofel
De(...)e= >0
(o= LREACEE ot = Sl o (5.10)

Average over product of field variables:

Cn(X1, ey Xpn) = (d(x1).-.0(X0)) (5.11)

is the n-point correlation function of the field ¢. The simplest function is the one-point
function C4(x) = (¢(x)) which corresponds to the field’s expectation value. For field theories
which have only even-power terms, this vanishes.

The first truly nontrivial function is the two-point function

G(x1 — x2) = Cz(x1,%2) (5.12)

which is called the propagator or Green function (here, we assumed translational invariance;
this is not always the case !).

Dimensional analysis. The action itself is a dimensionless number. Simple inspection gives
L2l =1, LmP[e)* =1, Lgl[¢]* =1 (5.13)

and thus
[¢p] = L=@=2/2 [m] =171, [¢] = L™ (5.14)

The ‘mass’ parameter thus represents an inverse length scale; this length scale sets the correlation
length (at least in the unperturbed theory).

Propagator for the Gaussian model (free bosonic field) Use FT:

1 .
P(x) = T2 Z e P¥pp (5.15)
P

CMFT(5.2)

CMFT(5.6)

CMFT(5.7)
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Action becomes

Consider now

This is 1
Go(x) = 77 D_ ¢ " (dpdp)o
p,p’
3.14)
Using the Gaussian contraction rule and defining the F'T of the propagator
5 1 1
<¢p¢p/>0 - p+p/,0mv go,p - <¢p¢—p>0 - ma

we get the real-space propagator:

ddp efip~x

1 —ip-X
Go(x) = 7d Ze P Go.p Lo WW
P

Note that the propagator solves the equation
(=02 +m?)G(r —1') =6(r — 1)

which is why we call it the Green’s function (or resolvent) of this kernel.

(5.16)

517)

(5.18)

(5.19)

(5.20)

(5.21)
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5.1.3 Perturbation theory at low orders

We now need to deal with the interaction part of the action:

Sintld] = g / diz ¢*. (5.22)

This is called the interaction vertex. We want to establish what the effect of this interaction
vertex is on correlations, using as basis the free correlators which we are able to compute:

Soto S Simile) 0 X )
Z:;O (777?!)” <(Slnt[¢])n>0 o ngo

n

(X[o]) ~ (5.23)

in which X (") represents the contribution to (X) at n-th order in perturbation theory in g.
Let us consider the perturbative expansion of the propagator. Explicitly, we can write

(G(x,x)) = (¢(x)8(x))

_ (6(x)o(x"))o — g [ dy(p(x)* (y)B(x))o + % J dy1d?y2(o(x)p(y1) 9" (y2)o(x'))o + (5.24)

1— g [diy(¢*(y))o + & [ diyrdiys(¢*(y1)d* (y2))o + ...

Zeroth-order contribution: G(®) = G is simply the free propagator computed above. First
order term:

GM (x,x') = —g ( [ 696 )60 ~ 60060 | ddy<¢4(}’)>o> (5.25)

—

! {gegfi)ftion is Gaussian, and the average of a product can be calculated using Wick’s theorem
1s gives for the first term

(¢(x)0* (y)o(x'))o = 3(d(x)d(x))o[(D(y)(y))o]* + 12(0(x)d(¥))0(d(y)¢(¥))o(d(y)d(x'))o
= 3Go(x — x')Go(0)* + 12Go(x — y)Go(0)Go(y — x'{5.26)

The total number of terms is 15 = (6 — 1)!! (number of distinct pairings of six objects). For the
second term,

(8()@(x"))o(6"(¥))o = 3(6(x)S(x"))o[(&*(¥))ol” = 3o (x — x')Go(0)”. (5.27)

Divergences. The factors Gy(0) contained in the first order terms are disturbing. Written out,

these are y
d®k 1
Go(0) = / i e (5.28)

If the dimension d > 1, this integral is divergent at large momenta (short wavelengths). This is an
ultraviolet (UV) divergence. Our theory is meant to be an effective low-energy description,
but it is sensitive to high-energy data (for example, an ultraviolet cutoff parameter (e.g. a lattice
spacing a) used to limit momenta to & < 1/a). The proper handling of these effects is the subject
of the theory of renormalization. Moreover, another problem occurs for dimensions d < 2: if
m — 0, Go(0) also diverges because of small momenta, which is a sign of an infrared (IR)
divergence. How to deal with divergences is a topic for a more advanced course, and we will
not cover this here.

CMFT(5.14)

CMFT(5.15)

CMFT(5.17)
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Rudiments of diagrammatics. Use a more convenient notation. We represent operator
entries as points with a dangling line, and interaction vertices as points with four dangling lines.
The field theory average requires us to ‘pair up’ the fields in order to get a nonzero value. This is
represented by joini .li:n%sl,4(§lz;:me(;e}111 1different possible joining leading to a different diagram. This
is illustrated in Fig.%ﬁﬁh?ﬂ?st—order term for the propagator.

*—— x —_— 3 o—o y 412 0&0
X X' X y X'

Figure 5.1: First order contribution to the propagator

fig:phidGreenl

We can then do the second-order terms as:
XX e Q8 000
) 2

+24 o——@ @ +72 +288 :XX)
()}
@ ©
+192 Q—@—O +288 ; ; ;:2 °
6) @)

Figure 5.2: Second order contribution to the propagator

fig:phi4Green2

General aspects of diagrammatic approach:

e Efficient representation of the perturbative expansion: at each fixed order in perturbation
theory, need to sum over all topologically distinct diagrams.

e No fixed rule as to how to represent a diagram: just don’t cut lines. Reshaping, twisting,
rotating etc do not change the meaning of a given diagram.

A . . ig:phi4Green2
e connected diagrams (5,6 and 7 in Fig. Elﬁ

e one-particle reducible diagrams (7) (others are one-particle irreducible. Generally,
diagram whose core region can be cut by severing n lines is n-particle irreducible (6:
3-PR).

e the loop order of a diagram is the number of closed loops
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e There are simple combinatorics arguments which fix the ‘prefactors’ of the diagrams.
Here, the prefactor is n!(4!)"/S where S is the ‘symmetry factor’ of the diagram (how
many permutations we can make between lines in the diagram, without changing it).

e suggestive of physical interpretation of the corresponding physical processes (though
misleading).

At a given order of perturbation t stilf) Green’s function obtains contributions from both
the numerator and denominator of oing this might sound complicated but in fact it
turns out to be simpler than the above. The reason is that contributions from the vacuum

graphs (in which at lgast gue-nteraction vertex appears which is not connected to any external
lines, as (1-4) in Fig. Elﬁ all cancel. This is known as the linked cluster theorem.

(%fso&he linked cluster theorem Consider a contribution to n-th order to the numerator
of

f ([ d?x¢*)™)o. This gives, under contraction, contributions with p-th order
vacuum graphs and n — p-th order non-vacuum graphs, with p running from 0 to n. The p-th

order contribution is
o (o) extaf et g oo (5.29)

with n.v. meaning ‘non-vacuum’. Summing over p, the numerator gives

ZZn p.p, /¢ )" P /</> : (5.30)

nOpO

Rearranging summations, this becomes of factorized form

g(— /¢ Mupop' /¢ _ (5.31)

with the p-summation cancelling against the denominator.
To compute the contribution to a given order n in perturbation theory, we thus follow the
Feynman rules, here for ¢* theory:

e For each operator ¢(x) in X, draw a point (labeled with x) with a dangling line.

e For the n-th order contribution in perturbation theory, draw n vertices with 4 dangling
lines, labeling them with coordinates y;, ¢ = 1,...,n

e Draw all topologically distinct diagrams obtained by joining the lines pairwise, keeping
only connected diagrams.

e Integrate over all vertex coordinates y;, ¢ = 1,...,n

e Divide the contribution by the symmetry factor of the diagram.
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5.2 Ground state energy of the interacting electron gas

Qualitative aspects When are interactions important 7
Assume each electron occupies a volume 7.

Uncertainty principle: kinetic energy per particle of O(h?/mrd).

Interactions: with neighbours, O(e?/rg).

Ratio of scales: dimensionless density parameter %“;;(2’ = Z—Z = rs; where qp = mh—; is the
Bohr radius.

The denser the gas, the lower . High density is synonymous with weak interaction effects !!
For ry > 1: properties dominated by electron correlations.

At very large ry, first order transition to Wigner crystal is expected.

Most metals: 2 < ry < 6, realm of Landau’s Fermi liquid theory.

Adiabatic continuity: noninteracting GS evolves continuously into interacting GS as strength of

the interactions is increased.

5.2.2 Perturbative approach

Free energy:

F=-ThZ (5.32)
As coherent state FFI:
z= /D(d?, e Sl (5.33)
_ _ ) p2 T _ _
S[% w] = Z wpo(_zwn + % - U)¢pa + ﬁ Z ¢p+qa¢p’—qa/v(q)¢p’a/¢po (534)
P pp’q

where we write from now on p = (p,w,) as a ‘four-momentum’.
Reference scale for correlation energies: free energy of noninteracting gas,

2m
<p,o

_g(R>:_ — p
Fo=-TY W(l+e?Emm) — = 5 (2 —p). (5.35)
po

p2
2m

We have the Fermi momentum pp = [2mu]'/?; the volume of the Fermi sphere is 37p%. Each

mode occupies a volume (2%)3, so the total number of electrons for a given chemical potential is
L* 4 3/2 23/2 L3 3/2,3/2

Energy per particle for the ground state:

2
Eow) _ Jo" der*s _ 30k _ 3, (5.37)
N(u) JF dpp? 10m 5 '

so the average kinetic energy per particle is 3/5 of the Fermi energy. The free energy is

2
Fo= By ¥ = -2 (559

(check: using %—Il = %%7 we get —g—,}; =ZN - %u%—]l = N as it should).
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Reintroducing interactions. Expanding the interaction term in the partition function yields

z_ /Dz/; o= S0l ]~ Sine ]

= / (¥, e~ Sol¥ 2

—Z=2 Z ( ’L’ﬂt 1; w])n>0' (539)

znt ZZJ]) "

Therefore, the free energy becomes

leanoTln{ i (Sint[, w])">0}, (5.40)

Expanding logs using In(1 +z) = >_>°_ o m gives

m=1 m

F-Fo=-TY # { L <(Sm[w7w])">o}

2

n=1 ni,na=1

= n 1 — —1)ntne n n 1 .
{ Sint)")o — = Z %((Smt) Do {(Sine)™*)o + 5(3 summations) + ...

where (...)§ is the connected part of the average.

To perform the evaluation of the expectation values of the interaction terms, we will use
Wick’s theorem to rewrite all expectation values as products of single-particle noninteracting
Green functions. These are given by

Go(p) = (Vpotbpe) = zio / D), p)e 0N 1. (5.42)

Writing the numerator and denominator explicitly as a product of decoupled Grassmann inte-
grals, the only term that does not cancel is the one for p, o, so

oty — Lo tbpo)e Pt By 0o
fd(&pav"/}pa)e_&p"[_lw”""ﬁ_“]wpa iwp + 1 — p?

Diagrammatic perturbation theory: Feynman rules
e Coulomb interaction: wavy line, argument q
e Contraction ({,,%0)0: free Green’s function Go(p) written as a line with arrow following the
flow of charge, four-momentum and spin as arguments
e all momenta conserved at vertices
e fermion loop: extra factor of (—1)
e don’t forget sum over spins !

(5.41)
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First order correction to F

T2 - -
]:(1) = ﬁ Z Z<¢p+qa¢p/fqa’V(q)qpp’a’wpa>0 (543)
pp'q oo’
Basic interaction vertex:
P’ p+q

Figure 5.3: Basic interaction vertex fig:F1_vertex

Two possible contractions: (1,4)(2,3) and (1, 3)(2,4).

ptq

Figure 5.4: Hartree (left) and Fock (right) contributions to the first-order free energy correction. |fig:Fi_Hartre

1) Hartree contribution:

(1 % 4 (et V(a = 0 (5.44)

P

This interaction is a ‘classical’-like charge coupling. We usually take this to vanish since the
zero-momentum Coulomb potential vanishes by charge neutrality.

2) Fock contribution:

T2 -
- @ Z Z V(Q) <wp+qawp+q0> <wpa'(/)po = L3 Z go go (p/ — p) (5.45)
p,q O

(4.39)
We can use %_mo summations over the two Matsubara frequencies:

o2 2
- -1 e
ZnFEPnFEP)| “p2 T—0 I3 Z p—p

Ep Ep/ <K

(5.46)
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This last integration (over two Fermi surfaces) can be done. Base spherical coordinates for p’
on p vector. Then, p, —p}, =p —p'cosO, p, — p), = —p'sinfsin¢, p, — p, = —psinf cos ¢ and

Ip—p'|? = (p—p cos0)? +p?sin? 6 = p? + p'2 — 2pp’ cos . The integral becomes
—1 L* \? 27p’? sin 6
I 4 d d /, 12 / do
L < ) 7r/ PP / vy 0 P2+ p'?2 — 2pp’ cos b
—L34 d
= 96,4 /o dpp /0 dp'p’ /0 dG@ In[p® + p'* — 2pp’ cos 0]

_L3 /PF DPF (p_|_p/)2 _LS PF P p_|_p
=— dpp dp'p'In = / dpp / dp'p'In
1674 0 0 (P - P')Q 4t 0 0 p—p

Using fo drzln 3£ = [ﬂ” —lp k2 x} |§ = 1 finally yields

(5.47)

(.49
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Second order correction to F

2 c
@ T ( T\ o
4 T2 \2r3 ZZ¢p+q0¢p/—q0’v(q)¢ﬂo’ww (5.49)
pp’'q oo’ 0
Basic vertices:
Number of possible contractions: 4! = 24. 4 with 0 interconnections, 16 with 2 interconnec-

tions, and 4 with 4 interconnections.
Draw the 24 Feynman diagrams

Putting things together, we have three types of nonzero contributions:

p
1
' P, pyra,
q 1 2 1 1 2
1 1
p +q
1 1 p +q
2 1
p +q p +q
1 1 1 1
D q p
1 1

p +q9 -9
1 1 2
a) b) )

Figure 5.5: The three types of contributions to the second-order correction to the free energy.

fig:F2_3types

a) 4 times ...

Contribution:

1 DIV 2k () S Golp) o + 00)Gof WV (an)V(as)

X 5 \ 378 X 2% (= p§;2 0(P1)Y%5(P1 +q1)%0(P1 +q1 — q2)V (d1)V (Q2

=76 Z Go(p1)G5(p1 + ¢1)Go(p1 + @1 — ¢2)V(a1)V(dz) (5.50)
P19192

b) 2 times ... Contribution:

ox L (L i 4% (—1)2 Go(p1)G Go(p2)G v?

x—\5m) % x (—1) p;} 0(p1)Go(p1 + q1)G0(p2)Go(p2 + q1)V=(a1)

3
= _% > Go(p1)Go(pr + 41)Go(p2)Go(p2 + ¢1)V(an) (5.51)

pP1p24g1
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c) 2 times ... Contribution:

T ( T\
2% —- <2L3> x2x (=1) > Go(p1)Go(p1 + q1)Go(p1 + 42)G0(p1 + @1 + @2)V (a1)V (q2)
P149192

3
L 5 > Go(p1)Go(p1 + 41)Go(p1 + 42)Go(p1 + ¢1 + g2)V (a1)V (a=(5.52)

2L
P14914G2

The b) part has a double integration p;,ps that is unconstrained (2 fermion loops). This
contribution dominates, having a higher power of system size.

Higher orders in perturbation theory The idea that diagrams with more fermion loops
(at a given order of PT) are dominant generalizes to higher order.
At order n, the dominant graph is the ‘ring graph’

Figure 5.6: The ring graph for the RPA approximation to the free energy.

fig:RPA_F

This contributes the random phase approximation term to the free energy,

n T 2T "
Flpa = 5 <L3V(q) > Go(p)Go(p + q)) (5.53)
q p

(prefactor: (n — 1)!/n!, since there are (n — 1)! distinct ways of arranging loops on a ring;
alternately, symmetry factor of n from rotation symmetry). Summing over n yields

Frpa =5 Y[l — V()] (554

where the polarization operator is defined as

11(g) = 75 3" Go(p)o(p + ) = T1(~0) (5.55)
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From results of problem 4.5.5, we can write

2T 1 1 —
Mow, = 35 2 e —ET R ew)

p Wn T €p 1Wntm = Epta iwn +&ptq

Sum over momentum yields (see Info block on p. 220)

M., = [1 _ wn W”"H’Fq} (5.57)

vpq iWn — VFq

where v is the density of states per unit volume at the Fermi surface,

1 d*p mp
Vo = ﬁ Z 5(51»" - ,u) = 2/ (27_‘_)35(519 - M) = 2F (558)
p,o

™

: 2x4m __ mpr
since 2X4T [P dpp? 5(— —p) = "5

Conceptual meaning of RPA and connection to screening. Compute expectation value of

number operator N = —0,F. Co &@g‘s—order result N = —6)#]-"(1) with RPA result
Nrpa = —0,Frpa- We have from E%% '

N = DS 0, 160G 1V ) (5.59)

p,p’

First order: use 9,Go(p) = —G&(p) so

N =— L3Zg0 )Go(p + @)V (q)- (5.60)

Diagram:

Draw diagram

7
RPA: from (%572)

r > V(q)9,11(q)

NRrpa = 3 . W (5.61)
But we have o
0uI1(9) = =73 > (95 (P)90(p + a) + Go(p) 95 (P + 0)) (5.62)

p

so we get

2
NRPAQEZ’);%;Q (P)Go(p +4q) = L3 Zveff Zgo )Go(p + ¢p.63)

where

(5.64)

Verr(a)

defines the dielectric function e(q) = 1 — V(q)I(q).
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So: RPA like first order, but with ‘bare’ Coulomb replaced by effective interaction summing
over polarization bubbles.

Diagrammatics of polarization bubbles

Vv
1-VvIl
Connection with electromagnetic response: electric displacement field given by product of dielec-
tric function with electric field in medium,

Verg =V +VaVepp = Vepp = (5.65)

D(q,w) = €(q,w)E(q,w) (5.66)

with
e(q,w) =1+ 4nx(q,w) (5.67)

where x is the electromagnetic susceptibility.
Identifying E with gradient of dressed potential V.;¢, D with gradient of bare potential V,

drx(q,w) = =V (q)ll(q,w) (5.68)

so susceptibility is proportional to polarization operator, (5.30)

Simplification in limiting cases: Lindhard function %ﬁ@ends on dimensionless ratio of
two characteristic length scales:

‘wavelength’ ¢~ ! and distance v /w traveled by excitations at Fermi velocity in characteristic
time w1,

For low frequencies: vg/w > ¢~ %
limit. Expand:

gas has enough time to screen out fluctuations, static

H(q7 wn) Su<qur Vot O(w/'UFq)v
1 4re? 4e?

V. ~ = = 5.69
eff(Q) wLqQUEF V(q)_l + v q2 +47T€21/0 q2 +)\_2 ( )
where \ = (47e?vy) /2 is the Thomas-Fermi screening length. Inverse FT:
—Irl/A
Vers(r) = = (5.70)
' r

so potential is screened on length scale ~ .
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Chapter 6

Effective theories

6. Broken symmetry and collective phenomena

6.1 Mean field theory

Let us imagine a very simple situation in which we have some basic theory
H = Ho + Hiny (6.1)

with Hy being a simple one-body Hamiltonian, and the interaction term being a product of two

one-body operators
Hipy = 0105, (6.2)

Let us imagine that the operators O; are such that they mildly fluctuate around some ‘mean
field’ value,
0i =(Oi)mr + (0; = (Oi)mr) = (Oi)mr +00;. (6.3)

We can then rewrite the interaction term as
Hint = (O1) mr{O2) mr + (O1) mpdOz + §01(O2) pr + 601605. (6.4)

If the fluctuations of O; are small, we can neglect the last term (quadratic in fluctuations) and
keep only the first two terms, that is keep only up to linear terms in the fluctuations. Since the
effective Hamiltonian

Hepp=Ho+ (O1)mrO2+ 01(02) mr — (O1) mr(O2) mF (6.5)

then contains only single-body terms (in which (O;) yF are now parameters), it can usually be
solved exactly. This allows to calculate (among others) the averages

(Oi)ers = Tr Qe PHesr, (6.6)

Zesy
One must then ensure self-consistency of the theory by requiring
(Oi)ers = (Oi)mr, (6.7)

in other words that the prediction from the effective theory are consistent with the assumptions;
these self-consistency conditions are usually sufficient to determine all parameters (O;)prr.

6-1
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This is the essence of mean field theory, in which fluctuations are coupled only to non-
fluctuating averages.

Mean field theory is somewhat of an art, in the sense that typical problems can be ‘de-
composed’ in different ways, each leading to their own mean-field solution. Which is best, and
whether the construction makes any sense, depends individually on each problem.

Generically, we would like to decompose two-body terms (which can’t be handled exactly)
into single-body terms (which can be). Let us imagine that we have four operators,

alalasay (6.8)

which we would like to write in mean field. If these were free particles, taking an expectation
value over a number-preserving theory would yield (using Wick’s theorem)

(a}adasas) = (alas)(abas) + ((alas){afas). (6.9)
For example, a (particle-number preserving) decoupling which is consistent with this is given by
GIGE%M =~ a1a4<a£a3>MF + a;a3<a1a4>MF + Ca1a3<a£a4>]VIF + Ca£a4<a1{a3>MF +

—(alag) prladas) e — Clalas) prrlabas) ir  (6.10)



6.2 Plasma theory of the interacting electron gas

2 T _ _
Z 1//170 —lWy + —— )wpa L3 Z 'L/)p+qa¢p’—qa’v((1)¢p’a/¢pa (6'11)

pp'q

with V(q) = ‘Tglez . Not quadratic, quartic ! No exact calculation. But: good trick: decouple the

interaction by introducing auxiliary field. Look at interaction term in action:

_s, T 7
¢St = exp <2L3 V(Q)Pqﬂ—q)a PqE;%wa%a- (6.12)

q

Consider a simple Gaussian integral over an auxiliary bosonic field variable ¢:

/D¢> exp <—Z¢>q _ ) =1 (6.13)

(which defines the measure D¢). Shifting ¢, — ¢¢ — %V(q)pq, get

j 1
1= /ch exp < 23 Z DqV ™ gt % > (bap—q+ D-qpq) + 3508 quV(q)pq>
q q

(6.14)
where the last factor is independent of ¢. Therefore, we have the identity

_S. 62 1 ie
e~ Sint = /D¢ exp | ~573 > oV H@)o—g + 3 D bap—q |- (6.15)
q q

This is a simple example of a Hubbard-Stratonovich transformation: decoupling of inter-
action at the expense of introducing an additional field.
The partition function then becomes

2= [ Do [ D@ w)esoo), (6.16)

with the effective action

2 .
56,5, 9] = LQ%M¢+Z%{GM+;—O%+;%4WUwﬂ)

pp’o

Performing the fermionic integration yields
= [ Do fi2¢ 2¢_, | det —”+f’—27 +i—eq3 (6.18)
= exp o q 74 P—g e Wt o =it 750) .
Use now the identity In det A= Trln 1217 the partition function is finally written as

Z= /Dqse*SW, (6.19)

with effective action

A2

Z ¢qq2¢7q — Trln |:—Zw 4+ — — i +
q

S[9] = D S

8wL3 ¢ (6.20)

CMFT(6.1)

CMFT(6.4)
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Mean field theory: stationary phase analysis.

55[¢]

5by 0,vq(q # 0,w) (6.21)

we have (using G~! = —id + 2o w+ %&)

2m

Y -1 _ Ai 51
%Trlng —Tr<gé¢qg )

5 0 5_ 2ie 5
=2 Z ngz (Mzg 1) = F Z gq1q25q1—qz,q (6-22)
9291

q192 9142

so saddle-point condition is (using (%@ v Ogr—a.q)

) 8 5 2ie
%S[(b] = 134 b—q— I3 ngql,qrq =0. (6.23)
1
Solution: guess that ¢q,. = 0 if either q or Gws%s # 0. Then, Green function is diagonal,
Ga1go X 0Ogy.q0, for ¢ # 0 both terms in @Tanish. Moreover, identify ¢ = 0 as solution
because of charge neutrality (which requires ¢4,—¢ = 0, which comes from V(q) vanishing for
q=0).
Expanding the functional in fluctuations around ¢ = 0:
51 51 ie A A 1, e 4 A oA A
Tr nG~'= Tr InG;~ + s Tr (Goo) + i(ﬁ) Tr (GopGod) + ... (6.24)
where ng—1 = —iw + % — p. Second order term:
€ |9 e?
(ﬁ) Z G0,pPq90,p—qP—q = T3 Z y9q0—q (6.25)
Pq q

(5.28
where II(g) is the polarization operator %._T%erefore, the effective action becomes (linear
term vanishes)

Serrld] = ﬁ Eq: g (Z‘i - eznq) ¢_q+0(8") (6.26)
so the partition function is
Zor=Z]] (1 - 47;2 Hq)1/2 (6.27)
q
and the free energy becomes
feff:—Tlnzeff:fﬁ%Zln <1—47;f211q) (6.28)
q

L. (5.27)
which is exactly Frpa from @7

CMFT(6.5)

CMFT(6.6)



Summary: diagrammatics versus field integration.

Diagrammatics: sum up Feynman diagrams
e ‘brute force’

e combinatorics

e messy, no clear physical picture.

Field integration: decouple, seek saddle pt, expand around it

e well-defined, ‘automated’, flexible program

e no mess with diagrams, less risk of missing important contributions
e most important: extensibility
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6.3 Bose-Einstein condensation and superfluidity

Weakly interacting Bose gas:
St.0l = [ dir [ dr [3e. 1)@ + B - pote. ) + 00w DR (629)

6.3.1 Bose-Einstein condensation

Possibility: at low T, the GS of a bosonic system can involve the condensation of a finite fraction
of all the particles into a single state (Einstein, 1925). Simplest case: noninteracting gas, basis
in which the one-particle Hamiltonian is diagonal. We then have

20 = Z|g=0 = /D(i/;,z/;)exp [_ Z&an(_iwn téa— ﬂ)wan] . (6.30)

Assume that ¢, > 0 with ground state ¢g = 0. To ensure stability, the chemical potential must
be negative (otherwise £, — p could change sign for low-lying states).
Number of particles: given by

Np) =T m => np(ca) (6.31)

na a

with np(e) = 1/(e#=#) —1). For a given number N of particles, this determines ;(7). As T
goes down, so does np(eq20), and thus p(7) has to increase with decreasing temperature, to
preserve the total particle number.
Below a certain T, the maximum value of = 0 is not enough to keep np(e40) large enough,
and we get
ZnB(Ea)|u:0 =r<r. N1 <N, (6.32)

a>0

meaning that below this temperature, the number of particles in the lowest state, Ny becomes
macroscopic, with Ny + Ny = N.

Exercise: for a 3D system of free particles, e, = h%2k?/2m, show that T, = coh?/ma® where
a = p~'/3 is the average interparticle spacing (p = N/V is the density), and ¢; is a constant
of order unity. Show that for T" < T, the density of particles in the condensate (k = 0) is
po(T) = p[L — (T/T.)*?].

In terms of field operators, we will want to keep the zero energy state counted separately. In
the action, the 19 mode corresponds then to a Lagrange multiplier fixing the number of particles.
The (reduced) action takes the form

50[157 ¢] = —1/_105M¢0 + Z /(/;an(_iwn +E&q — ,U/)"/}ana (633)

a#0,n

where (for the purpose of calculations) u is kept different from zero. This allows for example to
write the particle number condition,

_ 1 _
N = _aHF()lM:O = T@H In Zo|M:O = Yot + T Z o — e = Potho + N1 (6.34)

a#0,n n @

now and further on.

CMFT(6.7)

CMFT(6.7a)

CMFT(6.7b)

CMFT(6.8)



6-7

The weakly interacting Bose gas

We now reintroduce the interaction coupling. Dominant contribution to the action at low tem-
perature:

TS[io, o] = — oo + 5 (Gov). (6.35)

The stability of the action is now g &teggd by the interaction, no matter how small g > 0 is.
Saddle-point analysis: varying (%W to g yields

Yo(—p + %1@0%) =0, (6.36)

which is solved by any field such that |¢9] = /uL?/g = v. Remarks: 1) for p < 0, no
stable condensate exists ()9 = 0). 2) below the condensation threshold (so for p > 0), any vy
s.t. |l = \/uL4/g solves the saddle-point equation (note: gty ~ L%, so the ground state
is macroscopically occupied). 3) the phase of vy is a free variable: any vy = yexp(i¢) with
¢ € [0, 27] solves the saddle-point equation.

CMFT(6.9)
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6.4 Superconductivity

First observed by H. Kammerlingh Onnes in 1911 in Leiden.
Two aspects: 1) drop of electrical resistivity to zero below critical temperature. 2) perfect
diamagnetism: a SC expels all magnetic flux from its interior.

6.4.1 Basic concepts of BCS theory

Time scales for electrons: ~ e,'. For ions: ~ wp' (inverse of Debye frequency). But wp' > 5!
SO ...
Attractive interaction leads to bound states of pairs of electrons, Cooper pairs, which mimic
bosonic particles.
Figure on p. 273: shell of thickness wp/vp around Fermi surface; large phase space for
scattering of pairs. Weak interaction but large phase space: possibly important effect !!
Simplified model: the BCS Hamiltonian

2 A g
H= Z{fkckg - ﬁ Z ClJr(+qTC]L_kiC,k/+q¢Ck/T (637)
ko k.k’',q

6.4.3 Mean-field theory of superconductivity

Due to the pairing interaction, the system develops an instability towards the formation of Cooper
pairs.

Assume that the ground state |25) of the system is characterized by a macroscopic number
of Cooper pairs, i.e. that the expectation value of pairs is non-vanishing:

g A g
A=<; D Qe o), A= 7d > (Qulefpel o 1920) (6.38)
k k

A assumes nonzero values below the transition temperature T,, and vanishes above; it is therefore
the order parameter of the SC transition (more details on this later).

The operator CLTCJLk | behaves like a creation operator for bosonic excitations. Nonvanishing
expectation value for it: condensation.

In mean-field: express the operator as its mean value + small fluctuations,

Ld Ld
Z C_k|Ckt = ?A + Zc—kickT — ?A (6.39)

and assume that the parentheses are small. The mean-field Hamiltonian then becomes (keeping
only bilinears in electron operators)

R . _ L
H—pN=), [gkCIcJCkU — (Ac_kyexr + ACLTCEM)} + ?|A|2 (6.40)
k

which is known as the Bogoliubov or Gor’kov Hamiltonian, or Bogoliubov-de Gennes
Hamiltonian in the West.

This Hamiltonian does not conserved electron number. To diagonalize it, introduce the
Nambu spinor representation

Ckt
vl = (CLT ka¢) , Uy = ( et ) (6.41)

CMFT(6.14)

CMFT(6.17)
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The Hamiltonian then becomes
. . —A L
HopN=Swl( % 1 — A2 6.42
RE S R LA S (6.42)
This can be diagonalized by the unitary transformation
_ Qe _( cosby  sinOx Ckt — U (6.43)
Xk = oﬂL_ki "\ sinfy — cos 0y c]L_kl = TkTk ’

which preserves the anticommutation relations of fermionic operators ay, (exercise). Note: these
operators combine creation and annihilation of original fermions !
Choose A to be real (gauge choice) and set tan 20, = —A /€. Defining

A = /A2 + €2, (6.44)

we have cos 260 = & /A and sin 20, = —A /), and the Hamiltonian becomes
N ~ 4
H—pN =" Mo om0 + D (Ge— M) + ?AQ. (6.45)
ko k

The elementary excitations (Bogoliubov quasi-particles) which are created by the of opera-
tors therefore have an energy gap of A. Due to the gap, the ground state is 'rigid’.
The ground-state wavefunction is the vacuum state of the o operators,

1) = [ ] axcrer—ies[0) ~ [ ] (cos bx — sinbuecficl . ))0) (6.46)
k k

with sin = /1 — & /Ak. Vacuum state: unique up to normalization. For |{)), the normaliza-
tion is unity (exercise).

(6.17
Final step: need to solve (%le%consistently for the parameter A:

g g . g A
A=Ti Zk (Qole-seenals) = =73 Zk sin i cos b = 573 Zk e
wp inh wp/A
gA V(é-) /arcsm )
~ df—=—— =gA dxr = gA h A 6.47
2 /. g(AQ IV gAv ; x = gAv arcsinh(wp/A) (6.47)

Assumptions made: density of states v is roughly constant over energy scale wp, and interaction
is also uniform.
We thus get

wp _ 1
A= — "~ 2 v, 4
sinh(L/gv) < TPC T (6.48)

CMFT(6.18)

CMFT(6.19)

CMFT(6.19b)

CMFT(6.21)
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Chapter 7

Response functions

7. Response functions

Reminder: Schrodinger, Heisenberg and Interaction pictures

For a time-independent Hamiltonian H, the Schrédinger equation for states [1/%(t)) and its
solution can be written

ihd,[y° (1)) = H[y™(¢)), [0S (1)) = e 7y (t = 0)) (7.1)

A time-dependent matrix element of some operator O° thus reads
(W7 ()O3 (1)) (7.2)
where states are time-dependent, and operators are time-independent. This is the Schrodinger

picture.
In the Heisenberg picture, the time dependence is shifted from the states to the operators:

(W3 ()05 (1)) = (¥ (t = 0)|eF Tt OSe# 1y S (t = 0)) = (WO (1)) (7.3)

in which states are time-independent,

) = 195t = 0)) (7.4)
and operators OF (t) = enHtOS e 1 Hi obey the equation of motion
d ] k3 i3 ]
@OH(t) = % [H, 01 (1)] + et ltg,0% w1t = % [H, 07 @®)] + [8,0)". (7.5)

Let us now consider a generic, time-dependent Hamiltonian
H(t) = Hy+ V5(t) (7.6)

in which Hj is the time-independent Hamiltonian of some exactly-solvable theory for which we
know all the eigenstates, in other words for which we can provide a complete set of states |a®)
such that

Hyla®) = E o]a®). (7.7)

7-1
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The operator V5 (t) (in the Schrédinger representation) then represents some perturbation/additional

interaction which we would like to take into account. The idea of the interaction representa-
tion is to ‘Heisenbergize’ using only Hj, meaning that we define states and operators as (here
from their Schrédinger representation)

[0 (1)) = R oty (1)), O'(t) = er Mot rHot, (7.8)

The time evolution of states in the interaction representation can be simply obtained from the
Schrédinger equation as

ihOy ! () = R Mot [—Hy + H(®)] [° (1)) = ex TV ()45 (1)) (7.9)
This can be simply rewritten as

iho|v! () = V()1 (2)). (7.10)

Thus, in the interaction representation, the change of the phase of a wavefunction is driven
solely by the interaction term, and the time evolution of an operator is driven solely by the
exactly-solvable part of t.he Hamllt.oman. .SETR

Formally, one can write a solution to @_as

1 (1)) = U' (¢, to) v (t0)) (7.11)

in terms of the propagator U! in the interaction representation. If V°(¢) is in fact time-
independent, we immediately have

U (t,tg) = erHote= i H(t=to) o= Hoto (7.12)
For a generic time-dependent V¥ (t), we have
o U (¢, o) [0 (to)) = VI(O)U (¢, o) [0 (t0)) (7.13)
so the propagator satisfies the equation (with obvious boundary condition)
iho U (t, o) = VI)U (t, o), Ul(to,to) = 1. (7.14)
We can write an iterative solution to this. Integrating from ¢( to ¢ gives
-
ULt to) =1+ % 5 VYU t) (7.15)
so we can develop the perturbative series

/t dt,Vi(ty) /t1 dtaVi(ts) + ... (7.16)

to 2SO

. t -\ 2
Lt t) =14 — [ ar'vii -t
U'(t,to) t5 Vi) + 7

to

This series can be represented as

Ul(t,ty) = i<_l> /dtl/tldt2 / o, VIit).. Vi)

n=0

— f: z/h /dtl...dtnTt V(). VY (t,)] (7.17)

n=0 to
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in which we have introduced the time-ordering operator T} acting as (here, for O operators which
are bosonic in character)

Of(t1)O5(t2), t1 >ty
T, [01(1)O5(t2)] = (7.18)
Og(tg)@{(tl), tl < tQ

(with straightforward generalization to an arbitrary product of operators at different times).
The propagator in the interaction representation is thus compactly represented as

UL (tt0) = T [e 7 o d”’(t')} . (7.19)
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Reminder: Fermi’s Golden Rule

Introducing some perturbation into a system generates some generally very complex time-
dependent behaviour. One way to picture this time dependence is to still consider the original
unperturbed basis of states, but have time-dependent state amplitudes. The probability of find-
ing the system in a given state thus becomes time-dependent. For a small perturbation, the rates
at which this probability flows from one state to another is given by Fermi’s Golden rule.

Let us consider an exactly-solvable, time-independent Hamiltonian Hy for which we know a
basis of eigenstates

Hyla®) = Eo]a®). (7.20)

Let us consider perturbing this theory with a time-dependent operator which is adiabatically
turned on from ¢ = —oo onwards:

V(t) = Ve witnt n— 0" (7.21)

(we will evaluate this ¢ for times much less than 1/n). Here, V is some perturbing operator in
the Schrodinger representation.
We now address the following question. If the initial state is

[4°(t = to)) = |of) (7.22)

for some initial state |a), what is the probability amplitude for finding the system in state |a?>
(with i # f) at time t?

In the interaction representation, we had [/ (£)) = U (t, o) |1 (t)). Since [ (£)) = enHot S (¢)),
we have ¢! (to)) = enH0%0|a) and thus

|5 (1)) = e~ FHLUT (t, tg)e R Hoto [a0). (7.23)
Consider now calculating the amplitude for being in state |a?c), f # i, at time t:

7%Ea(}t+%E0?t0

(@395 (1)) = (aYle” T U (¢, tg e Hoto|al) = e (@YU (¢, to)|ad).  (7.24)

Using the series expansion for the propagator and keeping only the linear (in V') response, the
matrix element of the propagator can be written

.
1
(@}|UT (¢, to)|ey)) = (afla?) - ﬁ/ dt' (G |V (t')]ad) + ... (7.25)
to

The first term vanishes (we are looking for transition rates, so the initial and final states are
different, f # i). The second term gives (substituting the explicit form of the perturbation)

ot oot : —
7 i ’ i / 7 +[E o0 —E_o—hw—ihn]t
- ﬁ/ dt' (af]em otV (' )em 7o of) = _ﬁ/ dt'e" s T (@$V]ag).  (7.26)

t() tO

Since the matrix element is time-independent, we can perform the time integral, giving us

<049'|V|CY?> 6%[E°(} *Eagfhwfihn]t’

0771 o0 _
" 01010 = = i

i, + O(V?). (7.27)

Let us now take the limit ¢y — —oo, with  — 0% but ntqg — —oo while keeping ¢ finite (that is,
the perturbation is turned on at a vanishingly slow rate from the infinite past). This gives us
(a}|V]a?)

*%Eag(t*tO) —iwtnt | (12 7.98
T — (Eqy — Bo) + inh c +O(V%). (7.28)

(aflv°(1) =
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The probability to be in state |a?c> at time ¢, given that we initially started in state |a?) is thus

(o} [V]ag)2e™

Pres) = Kl O = =gl — g e (7.29)
The rate at which this probability changes is thus
P = aflVIal P tim o o _2’}3&?))2 — (7.30)
Using the representation of the Dirac delta function §(z) = lim,_,q+ %LQ”TWQ then yields
Fermi’s Golden rule %Pfgi(t) = 2%|<0¢?»\V\a?>\25(hw — (Ea(} — Eq0)) (7.31)
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Linear response theory

We can start our considerations by looking at a system represented by a Hamiltonian Hy, without
having to specify in how many dimensions our system is, whether it is on the lattice or in the
continuum, or what its operator content is. Let us imagine that we perturb our system by
applying some external forces on it. We represent this by adding to the Hamiltonian a time-
dependent term

H(t) = Hy + F(t)P (7.32)

in which P is the (Hermitian) perturbing operator with which we connect to our system and F
are the (real-valued) time-dependent parameters setting the scale of this change (this equation
is in the Schrédinger picture, so P is time-independent).

What we are interested in is the effect of the presence of this perturbation on the expectation
value which generic observables O take, that is we would like to calculate O(t) = (1(t)|O(t)).
Generically, these expectation values will be complicated functionals of the applied perturbations.

Let us try to compute these expectation values using a minimal set of assumptions. Written
in the interaction representation, such an expectation value becomes

O(t) = (W (MO MY (1) = (¥ (to)| (U (t,10)) " OT(OU” (t,t0)[0 (t0) (7.33)

in which the propagator is (we put 7 = 1 from now on)
ULt t0) = Ty [e_iftto dt' R ()P I(”} . (7.34)

Let us assume that the system starts in an eigenstate |1)g) of the unperturbed system at t =
to = —o0, and that the perturbation parametrized by F'(¢) is very small (the precise definition of
‘very small’ is actually quite complicated; for our purposes it suffices to say that it does not lead
to modifications of order of one in the state occupation probability distribution). Expanding the
propagator in powers of F' allows to write

O(t) = Oy, —i[ dt' (ol [0 (8), P! (t)]lwo) F(t') + O(F?) (7.35)

in which Oy, = (¢0|O|tho) is the original expectation value in the unperturbed system. We now
define the retarded correlation function (in eigenstate 1) of Hy) linking P and O as

O (¢ — 1) = —if(t — ') (][O (1), PT(t)]1¥) (7.36)

in which the operators are in the interaction representation (e.g. O (t) = e'HotQe~iot ) Note
that this in only a function of ¢ — ¢’ (and not of the individual times) in view of our assumption
that |¢) is an eigenstate of Hy.

In terms of this, we find that in the presence of the perturbation F (t)I:’, the expectation value
of O obtains a linear correction as compared to its original, unperturbed value:

O(t) = Oy, + /_ dt Croetp% (t—tF(t') + O(F?). (7.37)

This known as the Kubo formula and is the fundamental equation of linear response theory.
Physically, the retarded function Cret o (t—t') thus connects a perturbation enforced by P acting

at time ¢’ to the modification of the value of O at time ¢. Since the retarded function vanishes for
t > ', only past perturbations can influence an expectation value, in other words the retarded
function reflects the principle of causality.



The frequency-dependent retarded correlation function

Let us look more closely at our retarded correlation function. Setting ¢’ = 0 without loss of
generality, and expliciting the interaction representation for the operators, we get

COy (1) = =i0(1) (] (et O 0t P — PetHotOemiHot) ). (7.38)

ret,Yq

Introducing a resolution of the identity 1 = )" |¥q) (| between the two operators and defining
the matrix elements

<wa|A|"/}a’> = Aaa’ (739)

we can write

Ol () =—ib(t)>. (Oaa/Pa/aei(E“*Ea’)t — Paa/Oa/ae*i(E“Ea’)t) : (7.40)

s
ret, o
ClC/

Let us now introduce the Fourier transform (in time) of this retarded correlation function

ret,)q

Ol (v) = / dt COL. (t)eiwt—nltl (7.41)

—00

in which we have introduced a regulator n — 0" to ensure that the time integral converges.
Performing this transform explicitly gives

CTOe,th (W) _ Z < Oaa’Pa’a _ Paa’Oa’a : > ) (742)
Wa ~ wH+Ey—Ey+in w—(Esa—Ey)+in

A representation such as this, where the time dependence has been explicitly extracted by using
an eigenstate basis, is known as a Lehmann representation. Viewed as a function of the
real frequency w extended to complex values w € C, this retarded correlation function has
singularities in (real) frequencies, which are at positions +(E, — Eg) — in, in other words which
are exclusively in the lower half-plane of w. Any retarded correlation function is thus analytic in
the upper half-plane of such a (generically complex-valued) w.

Note that introducing n — 0 is purely a convenience trick to make calculations easily
tractable. Without it, we would for example have to deal with integrals of the form

/ dt(t)ei @Bt — / dtei@=E) (7.43)
—00 0

which are ill-defined as they stand. On the other hand, with the regulator, they become trivial:

—i / dtei-Bn—nt — 1 (7.44)
0 w—E+in

The physical interpretation which can be given to the regulator is that it represents generic
decoherence between wavefunctions at large times: quantum oscillations between states don’t
remain phase coherent forever, leading to the eventual decay (in time) of correlations. To separate
the real and imaginary parts of a correlator, we can make use of a particularly useful identity
due to Dirac:

1 1
li = Fimd P— 7.45
WE& wEin Fimo(w) + w ( )

in which P represents taking the principal part of the integral in which this function stands.
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Advanced and real-time correlation functions

Besides the retarded correlation function, it is also possible to define the following functions: the
advanced correlation function which (contrary to the retarded function) is only nonvanishing
for negative time arguments,

Coin(t = 1) = 0 = )(][0T (1), P (t)]]w) (7.46)
or (taking again ¢’ = 0 without loss of generality)

Ct?d’f:wa (t) = Z‘e(*t) Z (Oaa’Pa’aei(EaiEa/)t - Paa’oa’aeii(EaiEal)t) . (747)

ol

Under the (time) Fourier transform (using the same conventions as for the retarded function),
this becomes

3 D O IP/ P /O ’
CO’P == aa Qo - oo > a 7.48
v () = 2 <w+Ea —Ey —in  w—(Eo— Eu) —z’n) (748)

ol

so the advanced function is analytic in complex w in the entire lower-half plane.
We can also define the real-time correlation function involving the time-ordered product
of the operators,

COP (t —1') = ~i(IT (O ()P () |w) (7.49)

or equivalently

cOP(t) =iy (Oaa/Pa,a O(t)e Ea=Ba)t 4 Py i Onrr 9(_t)e—i<Ea—Ea/>t) . (7.50)

The (time) Fourier transform of the real-time correlation function can thus be written

A A Onii Py Pooa Oy
CO’P _ (6763 (o307 _ (676 [e2ye 7'51
1/10< (w) Z(W+EQ_EQ/+Z77 (A}_(EQ—EO/)_Z”]) ( )

ol

and is not analytic either in the lower or upper half-plane of w.

Thermal correlation functions

Up to now, we have written out correlation functions for a given specific initial state. More
generally, if the initial condition is represented by an ensemble, the correlation function can be
written as (here the retarded function for a Gibbs ensemble; advanced and real-time correlations
are defined in a similar manner)

cQl W) = 2308, e e = <P S w1070, P O waye P, (752)

[e3 [e3

with partition function (note: if you are working in a grand canonical ensemble, you can view
the chemical potential as being included in the definition of E,)

Z=) e PP (7.53)
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Performing the same computations as above (using the Lehmann representation), and inter-
changing indices in the second sum, we obtain

e_BEoc — e_BEa/

O Oua' Pova : 7.54
ret azal _|_ Ea _ Ea/ + ’L?] ( )
~BBa _ o—BEu

cOP( Ouvort Pyt oy — 7.55
adv Oézal W+ Ea —E, — “7 ( )

A 1 e BEa e BEq
COPwW)== OunaPua - 7.56
() Zaz;‘/ <w+Ea—Ea/+in w+Ea—Ea/—in> (7.56)

The analytic structure thus remains the same at finite temperature: the retarded (advanced)
function has singularities in the lower (upper) half-plane, whereas the real-time correlation func-
tion has singularities in both half-planes.

The imaginary-time correlation function

Besides the definitions of correlations in real time provided above, it is also convenient to define
the imaginary-time (thermal equilibrium) correlation function as

COF (11 — 1) = (T (O(r1) P(2))) (7.57)

in which ((...)) means thermal averaging and T, is the imaginary-time ordering operator (acting
in a similar manner to the real-time ordering operator 7;), and in which we have used the
imaginary-time interaction (in other words Heisenberg for the Hamiltonian Hy) representation

O(r) = eHoOe=7Ho, (7.58)
In the Lehmann representation, this becomes
5 p 1
cOF(r) = ~ > Oaar Parae e Ea)™ (0(7)e PP + 0(—1)e PP, 7 €] =B8] (7.59)

(the argument’s restriction to | — 3, B[ coming from the fact that it’s really 7 — 75 with 7; € [0, 5[).
By inspection, this has the periodicity property

COP(r) =CcOP(r + ), ~f<T7<0 (7.60)

so this correlation function has a Fourier transformation in imaginary-time with (bosonic) Mat-

subara frequencies iw,, according to C(iwy,) fo drC(T)e™n". Performing this Fourier transform

gives
BEa _ o—BEq

TO P an Z Oaa’Pa QT. (761)

:Crete
Comparing with @_sh%ws that the imaginary-time and (real-time) (thermal equilibrium)
retarded correlation functions are related by the formal analytic continuation

ret (w) = CTO7P(iwn)|iwnHw+in- (762)
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Defining the ‘master function’

. —BEs _ ,—BE_
e e o
C,?’P(Z) = E Oaa’ Fa’a

—_— 7.63

a,a’

for generic complex argument z, we have that C,et, Cado,Cr are respectively given by taking z —
w + i, w — in, iw,. By inspection, C(z) is analytic everywhere except on the real axis. Suppose
that we somehow have managed to compute C; (iwy,) for all positive Matsubara frequencies iwy, >0,
and that we can find the analytic continuation of C(z) to the upper half-plane (z) > 0. The
retarded correlation function would then be given by the evalution of this function on the shifted
real axis z = w + in.
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Single-particle correlation functions

Up to now, we have considered generic hermitian operators P and O respectively effectuating
the perturbation and representing the observable of interest. These can be composite, many-
body operators, which can be written in terms of the fundamental creation and annihilation
operators in our theory, which can be either bosonic or fermionic. Since everything can (at least
in principle) be rewritten in terms of (higher-point) correlations of these fundamental operators,
let us now specialize to the case of one-body (or single-particle) correlation functions.

The simplest example: free fermions

Let us consider the very simplest case possible: free particles in a translationally-invariant system.
Our Hamiltonian is thus diagonalized in Fourier modes as

Hy =Y cralax (7.64)
k

with [ak,ai,] = Ok k-

Retarded function. The single-particle retarded correlation function (in state [¢)) is then
defined as

Catfon(tr = t2) = —i0(ts — 1) ({ax(t2). af(12) } 5.0 (7.65)

with {,} denoting the anticommutator and where the equilibrium thermal average at fixed (in-
verse) temperature and chemical potential is denoted

1 _ _ _ _
(- Nppu= z, Z("')e B(Ba—pNa) Zg, = Ze B(Ea—nNa) (7.66)
S =

[}

Introducing a resolution of the identity and using the interaction representation in the grand-
canonical ensemble (so including the chemical potential specifically)

ay(t) = etHo—rN)ty, p=ilHo—pN)t _ o—ibity, a,t(t) = eig’“ta,t, &r=er—n (7.67)
we can rewrite the retarded correlator as
Ch(t — t2) = —ib(t; — to)e™or(112) ((akabﬁ,u + @ak)ﬁ,u) (7.68)
Since the occupation of fermions is simply the Fermi distribution, we immediately have

(afar)p = nrp (& B) (7.69)

and our retarded function simplifies to
Chito(ty — to) = —if(ty — to)e™ (1 12), (7.70)

Fourier transforming (in time) using
C(w) = / dte™ = ¢(t) (7.71)

gives
(7.72)
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The advanced function. The advanced function is defined as
Chte(ty — t2) = i8(t — 1) ({ar(t1), 0} (t2) }) g (7.73)
and takes the simple form
Caly (1 — to) = i0(tz — t1)e " ex (1 712), (7.74)

Fourier tranforming to frequency, this is
1

Chn(w) = ————. 7.75
B ) = e (7.75)

Note that the advanced and retarded functions are here linked by simple conjugation:
Chiin (@) = (Chn (@), weR. (7.76)

Other useful real-time-dependent functions. In addition to the retarded and advanced
functions, the following two functions (the ‘greater’ and ‘lesser’ functions) are useful to define:

3t — t2) = —i{ar(t1)al,(t2)) 5.pux (7.77)
Cg,u;k(tl —ta) = _i<<az(t2)ak(tl)>ﬁ,u- (7.78)
These are simply related to the retarded and advanced functions as

Crtt—t)=0(t—t)(Co({t—t)—C(t—1))

cvt—t) =0t —t)(C<(t—t)—Co(t—1)). (7.79)

A direct calculation similar to that given for the retarded function gives (for our free fermions)
C3n(t =) = —i(1 — np (& B))e 1),

C5n(t — ') = inp(&; B)e (71, (7.80)

Imaginary-time correlation function. The retarded function is simply related to the imaginary-

time correlation 1

Wy, — gk
by performing the analytic continuation tw, — w + .

C i (iwn) = (7.81)

The spectral function. A particularly meaningful quantity is the single-particle spectral
function defined simply as

Ag k(W) = =2 Im (C5%,.1 (). (7.82)
The greater and lesser functions are related to the spectral function according to
C5 (@) = —i(1 = np(w — 115 8)) Ap ik (), C5 (W) = inp(w — 115 B) Ag pire(w).  (7.83)

As can be shown from the Lehmann representation, the spectral function is also related to the
retarded and advanced functions as

" A / " A /
Cfg?fb;k(w) = /di /37H,k(w) Cadvk(w) — / di ﬁvlt,k(w) (784)

27 w—w +in’ Bous 2r w—w' —in’
For free fermions, using the Dirac identity, the spectral function simply becomes

Aﬁ,u;k(w) = 27‘1’6((,0 - fk) (785)
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Appendix A

Prerequisites

A.1 Mathematics

Fourier transformations

In the continuum. Let f(z) be an integrable function of a real parameter x, which satisfies
o0 .
S~ dx|f(x)] < co. It can be represented as a Fourier transform:

f(r) = /°° %ei’”f(k) with coefficients | f(k) = /OO dre™ " f () (A1)

— 00 —0o0

To go from one representation to the other, one uses the identity

/ d—keik(x_IO) = d0(z — ) (A.2)
oo 2T

Continuum, finite interval. Let f(z) be an integrable function defined on a finite interval
z € [0, L[. If we extend the definition of f(x) to the whole real line by assuming (quasi-)periodicity
f(x+ L) = €™ f(z) for some « € [0, 1], we can represent f(z) as the Fourier series

)
3

L
f(z) = %Z e fy | fr, = /0 dee*n® f(z)| where |k, = f(n + a) (A.3)

nez

To go from one representation to the other, one uses the identities

1 . Lo
7 Z ethn(@=20) — Z 0(x —x9g —mL)| / dpeFn=km)z — 5 (A4)

nez meZ 0

The infinite-size limit is easily recovered by using the replacement % Yon ffooo %.

Finite lattice. Consider a lattice of N points labeled by index j = 1,..., N. We denote the
lattice spacing by a. Let f; be a number associated to site j. Assuming again some (quasi-

A-1
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)periodicity fjin = ei2me [j, the Fourier series can be defined as (other conventions are possible)

N
1 iknaj —iknaj 27T

fj:N E etknai i | fkn:§ e thnai g\ knEfNa(ni-Oé) (A.5)

k,e BZ J=1

To go from one representation to the other, you can use the identities

N

1 . .

N Z 6zkna(Jfl) _ 5]_11 , Ze i(kn—km)aj _ N(S (AG)
kne BZ J=1

The notation k, € BZ means that we sum the momenta over one Brillouin zone, for example
by convention by choosing n = —N/2+4+1,—-N/2+2,..., N/2 (for N even) or n = 0,...,N — 1,
which respectively become k €] — 7/a,w/a] and k € [0, 27 /a[ in the infinite lattice size limit. In

the continuum limit a — 0, we simply redefine Na — L, aj — = and f; — af(x), and use the
rule a E =1 (e) = fo dx(...) to fall back onto the earlier formulas.
Note that very often, the prefactors = 55 % or % are ‘shared’ between the direct and inverse

Fourier transforms. You can then (like in the CMFT book) encounter expressions like

N

- 1 . .

: ehnaify =—=> e ki, AT

fi= f > Frar i N 2 fi (A7)
kne BZ j=1

This is only a matter of convention, and should be clear from the context. The only important
thing is that the pmduct of prefactors equals + (for the case of a finite lattice), + (for the finite
continuum interval) or 5= (for the infinite continuum).

The multidimensional cases are straightforward generalizations of the above formulas.
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Taylor expansions

Let f(z) be a function of a real parameter x. If f is infinitely differentiable around a point xq,
its Taylor series is given by

0 4(n) i
=2 e s g0 = T8 (A8)

Dirac § function (distribution[)
5(z) = { x i;g such that / da f(2)8(x — 20) = (o) (A.9)

for f(z) a continuous function of a real parameter x.

Laurent series

The Laurent series of a function f(z) of a complex parameter z € C is a generalization of the
Taylor series, including negative powers:

f)= Y falz—20)" (A.10)

n=—oo

The coefficient f_; is called the complex residue of f at zy. The coefficients f,, are obtained from
the contour integral

fn= ! dzL (A.11)

T omi L (2= z)n Tt

in which v is a counterclockwise closed curve enclosing zg.

Cauchy’s residue theorem
Let f(z) be a holomorphic function in the complex plane, except at isolated poles z;. Then,
1
2m7€dzf(z) = Z Resy(z) (A.12)
Zi €Y

where Resy(z;) is the residue of f at z;, and the sum is taken over all z; inside the (counterclock-
wise) closed curve 7.

1For the finicky among you.
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Gaussian integration

Review of Gaussian integration One-dimensional Gaussian integral:

o0 a 2
I(a) = / dre 5% = —W, Ra > 0. (A.13)
o a
First moment:
T dra?e 8 = 20,0(a) = || X A.14
. rxe = —20,1(a) = 5 (A.14)
With linear piece:
/ dae™ 5%+ = / dre$@-b/a+i = 1/216%, beC. (A.15)
—o00 —00 a
Generalization to complex arguments: for z = z + iy, [d(z,z) = [*_dxdy,
e T
/d(Z,z)e U = o Rw > 0. (A.16)
and
/d(i,z)efmz“l”% = ge%, Rw > 0. (A.17)
Gaussian integration in more than one dimension: real case
/ dve 2V AY — (27)N/2 et A~1/2 (A.18)

where A is a positive deﬁniteﬂ real symmetric N-dimensional matrix and v is an [N-component
real vector.

Proof: can write A = O”DO with O an orthogonal matrix and D a diagonal matrix. Change
of variables v.— Ov having unit Jacobian detO = 1. Factorizes into product of one-dimensional

. . N
Gaussian integrals, result [[,_;

3.10)
Multidimensional generalization of @7

/dve_%vTA"HT'V = (27T)N/2 det A1/2¢33 AT

3—7: Replace product by determinant.

(A.19)

This is important as a ‘generator’ of other useful identities.

3.13) 1
Applying 832mjn lj=o to LHS of @g‘wes fdve_f"TA"vmvn = (2m)N/2 det A=1/2A1 or

(Uvy) = AL (A.20)

with

(.) = (2m)™N/? det AY/? /dve—%vTAV(...) (A.21)

2The matrix A is positive definite if vI Av is positive for any nonzero real vector v.

CMFT(3.9)

CMFT(3.10)

CMFT(3.11)

CMFT(3.12)

CMFT(3.13)

CMFT(3.14)
CMFT(3.15)
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This generalizes: differentiating four times,

(Umvnvgvp) = Agt AZL 4 ATl A 4 ACL A

2n-fold differentiation:

_ 2 : -1 -1
<Uilvi2...vi2”> = Aiklikz “-Aikgn_lik‘Zn

pairings

which is known as Wick’s theorem, here for real bosonic fields.

(A.22)

(a2

Total number of terms:

Coyp, = @)t (2n—1)!, i.e. using pair exchange symmetry and exchange symmetry within each

nl2m
pair.

a%?;%ggl%g integration in more than one dimension: complex case Complex version of

/d(vT,v)e_"TAv =7 det A7?

(a2

with v an N-dimensional complex vector, d(v',v) = Hf\; d¥v;dSv;, and A a complex matrix

with positive definite Hermitian part.

o 3.17)
Generalization of @7

vl . Tow’ _ TA—
/d(vT,v)e viAv4+wl.v4vl-w :7'(-N det A lewA

with w, w’ independent vectors in general.

Averages of components: differentiating this twice, 92, 5 (...)lw=w/=0 gives

(Umvn) = A;}%
where (...) = 7N det A [d(vi,v)ev'AY(.)).
For 2n components: Wick’s theorem for complex bosonic fields:

= = = _ § : -1 -1
<'Ui1Ui2 V4,V Vg, ...’Uj”> = Ajlipl "'Ajnipn .
P

Total number of terms: C,, = nl.

(a25)

(A.26)

(A.27)
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A.2 Physics

Lagrangian and Hamiltonian mechanics
Recap of the principle of least action for a single point particle

Let L(z, &) be the classical Lagrangian of a point particle, and S[z] = [ dtL(z, &). The principle
of least action states that the path z(t) realized by the particle is the one which extremizes
the action, 65[x] = 0, meaning that for any curve ¢t — y(t),

lim E(S[ar + ey] — S[z]) = 0. (A.28)

e—0 €

This is fulfilled if and only if z(¢) satisfies Lagrange’s equation of motion
d
—(0;L) — 0L =0. (A.29)
dt

Check:

Sl + ey) — Sla] = / Q(L(x + ey, & + ej) — L(z, &)
— / 4t (DL, &)y + (0L (z, #))) + O()

— / (DL, 8)) — (0L, 0)y + (@ L)l + O(e) (A.30)

The second step uses partial integration. The V&;?%]%{l g{t) is assumed to vanish at the boundary

pointsEl, so the boundary te im?l§h Since is taken to hold true for any y satisfying
these boundary conditions, %T obtained for any ¢.

Statistical mechanics

The partition function of a system is given by

z - Ze—ﬁ(Ha—uNa) (A.31)
(6%
where § is the inverse temperature, p is the chemical potential, and « labels (eigen)states.

Quantum harmonic oscillator

Hamiltonian:

Energy levels: ¢, = w(n + 1/2), wavefunctions are Hermite polynomials, e.g.
Uo(x) = (mw/hﬂ')l/4 g=mwe” /2R,

Ladder operators:

N (P om0 A
a= 2(I+mwp), a' = 2(:': mwp) (A.33)

3Here, we haven’t specified any boundary conditions (for example, periodic), so we put the variation to zero
at the system’s ends.

CMFT(1.6)

CMFT(1.7)
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with canonical commutation relations

[a,a'] = 1. (A.34)
Operator form of Hamiltonian: .
H=w(@a+1/2) (A.35)
Vacuum state (= ground state): |0) such that |0) = 0. Complete hierarchy of states: |n) =
(@) [0).

Bloch’s theorem

Imagine that we’re trying to describe the behaviour of electrons in a solid in the language of
quantum mechanics. Since the ions in a crystal can in a first approximation considered to be
fixed in place, the electrons move in a potential U(r) which has the periodicity of the crystal’s

Bravais lattice,
Ur+R)=U(r), VR in Bravais lattice. (A.36)

Consider the following Hamiltonian for electrons:
H= —h—2v2 +U(r) (A.37)
2m
for which the Schriodinger equation reads
72
Hy = <_2mv2 - U(r)) Y = E. (A.38)

Bloch’s theorem states that the one-electron wavefunctions can be chosen to have the form of a
plane wave multiplied by a function having the periodicity of the Bravais lattice, i.e.

7#kn (I‘) = eik.rukn(r) (A39)

in which n is a band index and
Ugn (r + R) = u,(r) VR in Bravais lattice. (A.40)
One consequence of Bloch’s theorem is that the wavefunctions are quasi-periodic,
Yien (r + R) = e By, (r). (A.41)

More details concerning Bloch’s theorem, including its proof, can be found in e.g. Ashcroft &
Mermin, Chapter 8.

Wannier states

Wannier states are simply the Fourier transforms of the Bloch states:

= L —ik-R — i ik-R
an = \/N kezB:Z e wkna wkn = \/N ER: e 'QZJRn (A42)

The Wannier functions are peaked around the corresponding atomic site labelled by R.

CMFT(1.30)
CMFT(1.31)
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Exercises

TS Write the first two terms in the Taylor series around x = g for a) e*, b) 2%, ¢) Inx.
Cauchy Perform the integral ffooo dzﬁ using the residue theorem.

FT Let f(z) be a periodic function with period L, f(z + L) = f(x). What is the Fourier
transform of f2(x)? In other words, calculate fOL dze~ "7 f2(r) and express your answer in

terms of the Fourier coefficients fy, of f(z).

QHO. Show that the state (a')"|0) is an eigenstate of the harmonic oscillator Hamiltonian.
Normalize this state.
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Answers to the exercises

oo

1 1
mote — 0 Y en = St
e [ nzon!e +e+2e +
ala—1
(20 + €)% = a3 (1 + e/0)® = 25 (1 + e /o + %(e/xo)z 4

1 1 : — 1
In(zo+e€) =lnzo+In(l4+¢/xp) = Inzo+e/x0+ 5(6/1‘0)2+ §(€/$0)3+--- = lnonrZ E(e/xo)”
n=1

> 1 ®dr (1 1 2
dp— = [ 22 - 2 sy o (i) =
/oo Pt a2 /oozm (x—ia x—i—ia) pia ES iy (i) =

by using a contour encircling the upper half-plane counterclockwise.

L L
: : 1 . 1 ;
—ikn® £2( ) _ —ikn § : kn E kn
/0 dxe~kne f (CC) _/0 dxe n® (L 4 e’ 19€flc”1> (L 2 e’ 2$fkn2>

1 Lo IV | 1
=13 > fru Fro, /0 dae!Erathra ™) = 2% T fi FnyOnitnam = 7 D Fry iy
ni

n1,Nn2 ni,n2
By induction, one can prove that [, (a')"] = n(a")"~!. Then,

H(ah"|o) = hw(a'a +1/2)(a")"|0) = hw(a®((@")"a +n(a")" ) + %(fﬁ)")\O)

1
= hw(n + 3)(@)"|0)
so this is an eigenstate of energy (n + %)hw Its square norm is

(0a"(a*)"10) = (ola"~*((a")"a +n(a")"1)|0) = n(0la"~* (a")"|0)
=n(n —1)(0[a""2(a")""2|0) = ... = n!(0|0) = n!

so a properly normalized state is \/%(éﬁ)”m).
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