
From Path Integrals to Field Theory 2019

Take-home exam

To be handed back in on Monday 3 June 2019 (either by sliding your sheets under
my office door C4.262, or by email to J.S.Caux@uva.nl or prof@jscaux.org).

• Please be explicit in your answers. I cannot give you points for things I can’t/don’t see!
You are welcome to deliver your answers in pdf’ed LATEX. If you scan handwritten notes,
please ensure clarity and a reasonable size for your digital scan (don’t flood my inboxes).

• FPITFT class notes are allowed. You are not allowed to use other sources.

• You are NOT allowed to collaborate with anybody. I expect originality from everybody.

• This exam consists of three problems, all of which you should do.

• Sub-questions marked with ∗ are particularly challenging and don’t give many points.
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1. Diffusion on the Lieb lattice (40 pts)

The Lieb Lattice is a simple but remarkably interesting two-dimensional structure, named after
the famous theorist Elliott Lieb. It consists of a square lattice from which half the atoms of one
sublattice have been removed, leaving a so-called edge-centered square lattice (see the illustration).

In this problem, we consider a random walk on this lattice. The rules of this process are simply
formulated as follows:

• Initial condition: at time t = 0, our particle is on a red site taken to be the origin r = 0.

• During time intervals t = 2nδt to t = (2n + 1)δt (with n integer), the particle takes one
step from red to blue, with uniform probability among the 4 possibilities (full arrows in the
figure).

• During time intervals t = (2n+ 1)δt to 2(n+ 1)δt, the particle takes one step from blue to
red, with uniform probability among the 2 possibilities (dashed arrows in the figure).

a) (10 pts) Write down the discrete time evolution equation for this problem. For this purpose,
you can specialize to discrete time evolution from “even” times t = 2nδt to “even” times only. Is
this process a Markov process?

b) (20 pts) Using a judiciously-chosen Fourier transform, write down the exact solution for the
probability distribution function Pr,t|0,0 of finding the particle at r at time t, given that it was at
the origin at t = 0.

c) (10 pts) Define an appropriate continuum limit, and rewrite your distribution in this limit.
Explicitly give the value of the diffusion constant.
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2. Lévy flight (45 pts)

In all diffusion processes we have seen, we have ended up with a scaling relation of the form
(distance) ∼ (time)1/2, which is characteristic of normal diffusion. A natural question to ask is:
are other scalings possible?

We will consider a special random walk in which hopping on many length scales is allowed.
This is meant to model many “real-life” circumstances. For example: in their search for prey,
sharks move around locally in a random walk; if they don’t find anything to eat, they sometimes
“migrate away” to another place (as if they were taking a random step, but with much longer step
size), and start a new short-scale random walk.

For simplicity, we will consider a one-dimensional lattice of uniform spacing a. We will consider
a random walk with one-time-step equation

Pr,t+δt =

∞∑
l=−∞

hlPr−la,t

in which hl represents the probability of jumping a distance la.
We will use a scaling form for the step size probabilities. Consider a jump factor j (which you

can take to be an integer > 1). We will allow jumps of “size” j, j2, j3, .... Defining a probability
scale s (with 0 < s < 1), we will set that a jump which goes j times as far, occur s times less
often. In other words, we will set hl=jn ∝ sn.

a) (10 pts) Writing

hl = N(s)

∞∑
n=0

sn [δl,−jn + δl,jn ]

to represent the jumping probabilities, show that the normalization constant must be N(s) = 1−s
2 .

b) (10 pts) We have not yet specified any values for the jump factor j or the probability scale
s. Before we do that, we should ask ourselves what is the “root mean square” deviation in the
hopping distance. Said otherwise, calculate

σ =
√
〈l2〉 − 〈l〉2,

as a function of j and s, where the moments are defined as 〈lm〉 ≡
∑∞
l=−∞ hll

m.
What is the fundamental difference between the cases sj2 < 1 and sj2 > 1? Do you expect to

see normal diffusion if sj2 < 1?

c) (10 pts) Getting back to the random walk equations: introducing a Fourier representation,
show that the one-time-step equation can be solved for all times as

Pk,t+nδt = [fj,s(k)]
n
Pk,t

where you should obtain the explicit form fj,s(k) = (1− s)
∑∞
n=0 s

n cos[jnak].

For your edification: this is called the Weierstrass function, and it has the remarkable charac-
teristic of being everywhere continuous but nowhere differentiable (we will not make use of these
fascinating facts here).

d) (5 pts) Show that the function fj,s obtained above obeys the remarkable scaling law

fj,s(jk) =
1

s
fj,s(k)− 1

s
(1− s) cos ak
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e*) (5 pts) Since we will want to go towards some scaling limit, we will be interested in the
low-momentum limit of our functions. Let us now focus on the most interesting region defined by
sj2 > 1, in which hopping occurs on all scales up to infinity. For this range of parameters, the
function fj,s(k) turns out to have a very complicated momentum dependence at small momenta:
its behaviour is not the conventional integer-power series!

Show rather that the following fractional-power scaling form is consistent with the scaling law
in d):

fj,s(k) = λ0 + c|k|µ +O(k2)

where you should give the values for λ0 and µ (you don’t have to give c).

f*) (5 pts) Try to define a consistent scaling limit, and to show that the time evolution of the
probability distribution function is given by an equation of the form (you don’t have to compute
the constant D̃)

∂tPk = D̃|k|µPk
where µ is the fractional power obtained above. What does that mean for the scaling relation
between space and time for this type of diffusion process?

Such scale-free random walks represent a fundamentally different universality class than the normal
diffusion ones. They are known as Lévy flights.

3. Feynman propagator (15 pts)

A free particle living in one dimension is initialized in a state with wavefunction

Ψ(q, t = 0) =
eip0q−(q−q0)

2/2a

√
πa

Using the free particle propagator we have seen in class, compute the wavefunction at time tf > 0.
Draw a sketch of the wavefunction amplitude. Where is the most likely place to find the particle
at time tf? (said otherwise: where is the peak in the amplitude situated?)

4


