Pre-Quantum Electrodynamics

Spherical coordinates c.m.uf.sph
\begin{align*} \mbox{Gradient:} &{\boldsymbol \nabla} T = \frac{\partial T}{\partial r} \hat{\boldsymbol r} + \frac{1}{r} \frac{\partial T}{\partial \theta} \hat{\boldsymbol \theta} + \frac{1}{r\sin \theta} \frac{\partial T}{\partial \phi} \hat{\boldsymbol \phi}. \nonumber \\ \mbox{Divergence:} &{\boldsymbol \nabla} \cdot {\bf v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r\sin \theta} \frac{\partial}{\partial \theta} (\sin\theta v_{\theta}) + \frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} \nonumber\\ \mbox{Curl:} &{\boldsymbol \nabla} \times {\bf v} = \frac{1}{r\sin \theta} \left[ \frac{\partial}{\partial \theta} (\sin \theta v_{\phi}) - \frac{\partial v_{\theta}}{\partial \phi} \right] \hat{\bf r} + \frac{1}{r} \left[ \frac{1}{\sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{\partial}{\partial r} (r v_{\phi}) \right] \hat{\boldsymbol \theta} + \frac{1}{r} \left[ \frac{\partial}{\partial r} (r v_{\theta}) - \frac{\partial v_r}{\partial \theta} \right] \hat{\boldsymbol \phi} \nonumber\\ \mbox{Laplacian:} &{\boldsymbol \nabla}^2 T = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r}\right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial T}{\partial \theta}\right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2} \end{align*}

Author: Jean-Sébastien Caux

Created: 2022-02-08 Tue 06:55

Validate