Pre-Quantum Electrodynamics

Scalar and Vector Potentials emf.svp

\begin{align} (i)~~ &{\boldsymbol \nabla} \cdot {\bf E} = \frac{\rho}{\varepsilon_0}, &(iii)~~ {\boldsymbol \nabla} \times {\bf E} + \frac{\partial {\bf B}}{\partial t} &= 0, \nonumber \\ (ii)~~ &{\boldsymbol \nabla} \cdot {\bf B} = 0, &(iv)~~ {\boldsymbol \nabla} \times {\bf B} - \mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t} &= \mu_0 {\boldsymbol J}. \end{align}

Solving these for generale time-dependent sources \(\rho({\boldsymbol r}, t)\) and \({\boldsymbol J} ({\boldsymbol r}, t)\) is not an easy task.

Useful strategy: represent fields in terms of potentials.

Easiest:

\[ {\boldsymbol B} = {\boldsymbol \nabla} \times {\boldsymbol A} \]

Putting this into Faraday's law gives \[ {\boldsymbol \nabla} \times \left({\boldsymbol E} + \frac{\partial {\boldsymbol A}}{\partial t} \right) = 0 \] so this can be written as the gradient of a scalar (by choice: \(-{\boldsymbol \nabla} V\)) so we get

\[ {\boldsymbol E} = -{\boldsymbol \nabla} V - \frac{\partial {\boldsymbol A}}{\partial t} \label{eq:E_from_Potentials} \]

Using this potential representation for \({\boldsymbol E}\) and \({\boldsymbol B}\) automatically fulfills the two homogeneous Maxwell equations. For the inhomogeneous equations, substituting (\ref{eq:E_from_Potentials}) into Gauss's law gives

\[ {\boldsymbol \nabla}^2 V + \frac{\partial}{\partial t} {\boldsymbol \nabla} \cdot {\boldsymbol A} = -\frac{\rho}{\varepsilon_0} \label{eq:LaplacianV} \]

whereas Amp{\`ere}-Maxwell becomes \[ {\boldsymbol \nabla} \times \left({\boldsymbol \nabla} {\boldsymbol A}\right) = \mu_0 {\boldsymbol J} - \mu_0 \varepsilon_0 {\boldsymbol \nabla} \left(\frac{\partial V}{\partial t}\right) - \mu_0 \varepsilon_0 \frac{\partial^2 {\boldsymbol A}}{\partial t^2} \] which becomes after simple rearrangement and use of the identity \({\boldsymbol \nabla} \times \left({\boldsymbol \nabla} \times {\boldsymbol A}\right) = {\boldsymbol \nabla} ({\boldsymbol \nabla} \cdot {\boldsymbol A}) - {\boldsymbol \nabla}^2 {\boldsymbol A}\),

\[ \left( {\boldsymbol ∇}^2 {\boldsymbol A} - μ_0 ε_0 \frac{∂^2 {\boldsymbol A}}{∂ t^2} \right)

  • {\boldsymbol ∇} \left({\boldsymbol ∇} ⋅ {\boldsymbol A} + μ_0 ε_0 \frac{\partial V}{\partial t} \right) = -μ_0 {\boldsymbol J}

\label{eq:LaplacianA} \]




Creative Commons License Except where otherwise noted, all content is licensed under a Creative Commons Attribution 4.0 International License.

Author: Jean-Sébastien Caux

Created: 2022-02-21 Mon 20:41