5092ELEC6Y February-March 2023

Jean-Sébastien Caux


Jean-Sébastien Caux
you can call me J-S, Tintin (Kuifje),
or by the name of any other obvious lookalike

Room SP C4.262  
Tel 020 525 5775 (no chance)
email(s) j.s.caux@uva.nl prof@jscaux.org

Tip: use ED2023 in email subject.

Lecture notes

The course is taught from own
online lecture notes
structured roughly parallel to the
books of Purcell Morin and of Griffith,
which you should use as main material.

Health warning: the online lecture notes
are admittedly still under construction.

Sections will be polished up at least a week before being covered in class.

See the Literature section for suggestions of further alternative literature.

Online resources

Datanose page https://datanose.nl/#course%5B110947%5D
Canvas page https://canvas.uva.nl/courses/36061
Lecture notes https://jscaux.org/ln/pqed/
Health warning: under construction  
Lecture videos 2022 playlist
  (2021 playlist)
  (2020 playlist)


See the Syllabus for a detailed breakdown.

Lectures Time Location
Tuesdays 11:00 - 12:45 Theater3 NU-2C33
Thursdays 13:30 - 15:15 Theater3 NU-2C33

Exercise sessions

Days Time Location
Tuesdays 13:30 - 15:15 [see Datanose]
Thursdays 15:30 - 17:15 [see Datanose]


Lizzy Rieth l.a.i.rieth@uva.nl
Brecht Slootmaekers bslootmaekers@gmail.com
Hidde Stoffels hidde.stoffels@protonmail.com
Sibilla Bouché s.bouche13@gmail.com
Yining Zhang y.zhang11@uva.nl


Graded homeworks: 3 (see Syllabus for scheduling).
Each individually counts for 8% of the final grade
(if this is to your advantage).

Final exam: 2023-03-20 (Mon) 08:30 - 11:15,
(T) RAI blok 12, 13 (100)
Counts for [ 76 / 84 / 92 / 100]% of the final grade (depending on homework scores).


(see https://jscaux.org/ln/pqed/a_l.html for full listing)

  • PM
    E. M. Purcell and D. J. Morin,
    Electricity and Magnetismrequired
    Cambridge University Press (3rd edition) 2013
    Available from the Internet Archive at this link.
    • Purcell: the Nobel prize-winning discoverer of nuclear magnetic resonance;
    • part of the Berkeley Physics Course; extremely well written and illustrated;
    • extremely clear and accessible yet full of profound and inspiring insights
  • Gr
    D. J. Griffiths,
    Introduction to Electrodynamics
    (4th edition) Various publishers [Prentice Hall; Pearson; Cambridge University Press]
    • a "friendly and accessible" book; admittedly popular, but very patchy quality
  • FLS
    R. P. Feynman, R. B. Leighton and M. Sands,
    The Feynman Lectures on Physics (Vol. 2): Mainly Magnetism and Matter
    Addison-Wesley, 1964 [various reprints available]
    • profound, inspiring; no exercises; the feel good book about electrodynamics


Lecture   Date   Coverage
        Part 1: Electromagnetostatics
1   02-07   Introduction
        - Force, Energy
        - Field; Gauss
Lecture   Date   Coverage
2   02-09   The Electrostatic Potential
        - Poisson, Laplace
        - Boundary conditions
        - Electrostatic energy from the potential
        - Conductors
Lecture   Date   Coverage
3   02-14   Calculating/Approximating the Potential
        - The Laplace equation
        - Green's Identities; Uniqueness
        - Method of Images
        - Separation of Variables: car, cyl
Lecture   Date   Coverage
4   02-16   Calculating the Potential (cont'd)
        - Separation of Variables: sph
        - Multipole Expansion
        Graded Homework 1
    02-16   (given at end of Lecture 4)
        Coverage: electrostatics
    02-21   (due by start of Lecture 5)
Lecture   Date   Coverage
5   02-21   Magnetostatics
        - The Lorentz Force
        - Conservation; the continuity equation
        - Biot-Savart
        - Divergence and curl of B; Ampère's law
        - The Vector Potential
Lecture   Date   Coverage
        Part 2: Electromagnetostatics in Matter
6   02-23   Electrostatics in Matter
        - Polarization
        - Polarized Objects; Bound Charges
        - The Electric Displacement
        - Dielectrics
        - Linear Dielectrics
Lecture   Date   Coverage
7   02-28   Magnetostatics in Matter
        - Magnetization
        - Field of a Magnetized Object; Bound Currents
        - The H Field
        - Linear and Nonlinear Media
Lecture   Date   Coverage
        Part 3: Electromagnetodynamics
8   03-02   Induction
        - Faraday's Law
        - The Induced Electric Field
        - Inductance
        - Energy in Magnetic Fields
        Maxwell's Equations
        Graded Homework 2
    03-02   (given at end of Lecture 8)
        Coverage: electromagnetostatics in matter
    03-07   (due by start of Lecture 9)
Lecture   Date   Coverage
9   03-07   Charge and Energy Flows
        - The Continuity Equation
        - Poynting's Theorem and Vector
        EM Waves in Vacuum
        - The Wave Equation
        - Monochromatic Plane Waves
        - Energy and Momentum
Lecture   Date   Coverage
10   03-09   Electromagnetodynamics in Matter
        - Maxwell's Equations in Matter
11   03-14   Electromagnetodynamics in Matter
        - EM Waves in Matter
Lecture   Date   Coverage
12   03-16   Electromagnatic Fields
        - Scalar and Vector Potentials
        - Gauge Freedom and Choices
        Graded Homework 3
    03-16   (given at end of Lecture 12)
        Coverage: EM waves; EM fields
    03-21   (due by start of Lecture 13)
Lecture   Date   Coverage
13   03-21   Relativistic Electrodynamics
        - Relativistic Electromagnetism
Lecture   Date   Coverage
14   03-23   General revision
        What comes next? quantum electrodynamics
    03-20   Final Exam
    06-14   Retake