Pre-Quantum Electrodynamics

Bound Currents emsm.msm.fmo.bc
  • PM 11.5
  • Gr 6.2.1

Suppose we have a piece of material with known magnetization \({\bf M}\). What is the field produced by this object? For a single dipole: refer to A_di (vector potential of single dipole): \[ {\bf A} ({\bf r}) = \frac{\mu_0}{4\pi} \frac{{\bf m} \times ({\bf r} - {\bf r}')}{|{\bf r} - {\bf r}'|^3} \label{Gr(6.10)} \] For a chunk of material with local magnetization \({\bf M} ({\bf r})\), by the principle of superposition we thus have:

  • Gr (6.11)

\[ {\bf A} ({\bf r}) = \frac{\mu_0}{4\pi} \int_{\cal V} d\tau' ~\frac{{\bf M} ({\bf r}') \times ({\bf r} - {\bf r}')}{|{\bf r} - {\bf r}'|^3} \tag{A_M}\label{A_M} \]

In principle, this is all that is needed. As in electric case however, a more illuminating version of this equation can be given by using some simple identities: using \({\boldsymbol \nabla}' \frac{1}{|{\bf r} - {\bf r}'|} = \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3}\),

\begin{equation*} {\bf A} ({\bf r}) = \frac{\mu_0}{4\pi} \int_{\cal V} d\tau' {\bf M} ({\bf r}') \times \left( {\boldsymbol \nabla}' \frac{1}{|{\bf r} - {\bf r}'|} \right), \end{equation*}

we can further integrate by parts and use product rule curl_prod \({\bf A} \times ({\boldsymbol \nabla} f) = f ( {\boldsymbol \nabla} \times {\bf A}) - {\boldsymbol \nabla} \times (f {\bf A})\), we get

\begin{equation*} {\bf A} ({\bf r}) = \frac{\mu_0}{4\pi} \left\{ \int_{\cal V} d\tau' \frac{{\boldsymbol \nabla}' \times {\bf M} ({\bf r}')}{|{\bf r} - {\bf r}'|} - \int_{\cal V} d\tau' {\boldsymbol \nabla}' \times \left( \frac{{\bf M} ({\bf r}')}{|{\bf r} - {\bf r}'|} \right) \right\} \end{equation*}

Using the identity

\begin{equation*} \int_{\cal V} d\tau \nabla \times {\bf v} = \oint_{\cal S} d{\bf a} \times {\bf v} \end{equation*}

(this can be derived from the divergence theorem, with \({\bf v} \times {\bf c}\) as argument) leads to

\begin{equation*} {\bf A} ({\bf r}) = \frac{\mu_0}{4\pi} \int_{\cal V} d\tau' \frac{{\boldsymbol \nabla}' \times {\bf M} ({\bf r}')}{|{\bf r} - {\bf r}'|} + \frac{\mu_0}{4\pi} \oint_{\cal S} \frac{{\bf M} ({\bf r}') \times d{\bf a}'}{|{\bf r} - {\bf r}'|} \label{Gr(6.12)} \end{equation*}

Reinterpretation: first term: potential from volume current,

  • Gr (6.13)

\[ {\bf J}_b = {\boldsymbol \nabla} \times {\bf M} \tag{JbcurlM}\label{JbcurlM} \]

second term: potential from surface current,

  • Gr (6.14)

\[ {\bf K}_b = {\bf M} \times \hat{\bf n} \tag{KbM}\label{KbM} \]

With these definitions,

\begin{equation} {\bf A} ({\bf r}) = \frac{\mu_0}{4\pi} \int_{\cal V} d\tau' \frac{{\bf J}_b ({\bf r}')}{|{\bf r} - {\bf r}'|} + \frac{\mu_0}{4\pi} \oint_{\cal S} da' \frac{{\bf K}_b ({\bf r}')}{|{\bf r} - {\bf r}'|} \label{Gr(6.15)} \end{equation}

so the field produced by the material is the same as that produced by bound currents in the volume and surface of the material.




Creative Commons License Except where otherwise noted, all content is licensed under a Creative Commons Attribution 4.0 International License.

Author: Jean-Sébastien Caux

Created: 2024-02-27 Tue 10:31