Pre-Quantum Electrodynamics

Poynting's Theorem; the Poynting Vector emd.ce.poy

  • PM 9.6
  • Gr 8.1.2

Earlier: work done to assemble a static charge distribution: \[ W_e = \frac{\varepsilon_0}{2} \int d\tau ~E^2 \] Work necessary to get currents going: \[ W_m = \frac{1}{2\mu_0} \int d\tau ~B^2 \label{Gr(7.34)} \] Total energy should be sum of these two. Derivation from scratch.

Suppose that at time \(t\), we have fields \({\bf E}\) and \({\bf B}\) produced by some charge and current distributions \(\rho\) and \({\bf J}\). In an interval \(dt\), how much work is done by EM forces? From Lorentz force law: \[ {\bf F} \cdot d{\bf l} = q({\bf E} + {\bf v} \times {\bf B}) \cdot {\bf v} dt = q ~{\bf E} \cdot {\bf v} dt \] Really, we're looking at a small volume element \(d\tau\) carrying charge \(\rho d\tau\), moving at velocity \({\bf v}\) such that \({\bf J} = \rho {\bf v}\). Thus,

  • Gr (8.6)

\[ \frac{dW}{dt} = \int_{\cal V} d\tau ~ {\bf E} \cdot {\bf J} \tag{dWdt_intEJ}\label{dWdt_intEJ} \] The integrand is the work done per unit time, per unit volume, i.e. the power delivered per unit volume. In terms of fields alone: use Ampère-Maxwell: \[ {\bf E} \cdot {\bf J} = \frac{1}{\mu_0} {\bf E} \cdot ({\boldsymbol \nabla} \times {\bf B}) - \varepsilon_0 {\bf E} \cdot \frac{\partial {\bf E}}{\partial t} \] Using div_xprod, \[ {\boldsymbol \nabla} \cdot ({\bf E} \times {\bf B}) = {\bf B} \cdot ({\boldsymbol \nabla} \times {\bf E}) - {\bf E} \cdot ({\boldsymbol \nabla} \times {\bf B}), \] Invoking Faraday \({\boldsymbol \nabla} \times {\bf E} = - \partial {\bf B}/\partial t\), \[ {\bf E} \cdot ({\boldsymbol \nabla} \times {\bf B}) = - {\bf B} \cdot \frac{\partial {\bf B}}{\partial t} - {\boldsymbol \nabla} \cdot ({\bf E} \times {\bf B}). \] But obviously, \[ {\bf B} \cdot \frac{\partial {\bf B}}{\partial t} = \frac{1}{2} \frac{\partial}{\partial t} B^2, \hspace{1cm} {\bf E} \cdot \frac{\partial {\bf E}}{\partial t} = \frac{1}{2} \frac{\partial}{\partial t} E^2 \label{Gr(8.7)} \] so we get \[ {\bf E} \cdot {\bf J} = -\frac{1}{2} \frac{\partial}{\partial t} \left( \varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) - \frac{1}{\mu_0} {\boldsymbol \nabla} \cdot ({\bf E} \times {\bf B}). \label{Gr(8.8)} \] Substituting this in dWdt_intEJ and using the divergence theorem, we obtain

Poynting's theorem

  • Gr (8.9)

\[ \frac{dW}{dt} = -\frac{d}{d t} \int_{\cal V} d\tau \frac{1}{2} \left( \varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) - \frac{1}{\mu_0} \oint_{\cal S} d{\bf a} \cdot ({\bf E} \times {\bf B}) \tag{👉Thm}\label{👉Thm} \]

First term on RHS: total energy in EM fields. Second term: rate at which energy is carried by EM fields out of \({\cal V}\) across its boundary surface.

Energy per unit time, per unit area carried by EM fields: given by the

Poynting vector

  • PM (9.42)
  • Gr (8.10)

\[ {\bf S} \equiv \frac{1}{\mu_0} ({\bf E} \times {\bf B}) \tag{PoyntingVec}\label{PoyntingVec} \]

We can thus express Poynting's theorem more compactly:

Poynting's theorem (integral form)

  • Gr (8.11)

\[ \frac{dW}{dt} = - \frac{dU_{em}}{dt} - \oint_{\cal S} d{\bf a} \cdot {\bf S}. \tag{PoyntingThm_int}\label{PoyntingThm_int} \]

where we have defined the total

Energy in electromagnetic fields

  • Gr (8.5)

\[ U_{em} \equiv \frac{1}{2} \int d\tau \left( \varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) \tag{Uem}\label{Uem} \]

We can rewrite the energies in terms of densities, \[ U_{em} = \int d\tau ~u_{em}, \hspace{1cm} u_{em} \equiv \frac{1}{2} \left( \varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) \label{Gr(8.13)} \] Then, \[ \frac{d}{dt} \int_{\cal V} d\tau ~u_{em} = -\oint_{\cal S} d{\bf a} \cdot {\bf S} = -\int_{\cal V} d\tau ~({\boldsymbol \nabla} \cdot {\bf S}) \] so we get the

Poynting theorem (differential form)

  • PM (9.43)
  • Gr (8.14)

\[ \frac{\partial}{\partial t} u_{em} + {\boldsymbol \nabla} \cdot {\bf S} = 0 \tag{PoyntingThm}\label{PoyntingThm} \]

and has a similar for to the continuity equation (charge density goes into energy density, charge current goes into Poynting vector).

Example: Joule heating

Task: characterize the energy flow for a current-carrying wire.

Solution: the energy per unit time delivered to wire the wire can be obtained from Poynting's theorem.

Assuming that the field is uniform, the electric field parallel to the wire is \[ {\boldsymbol E} = \frac{V}{L} \hat{\boldsymbol x}, \] where \(V\) is the potential difference between the ends ald \(L\) is the length. Magnetic field is circumferential: wire of radius \(a\), \[ {\boldsymbol B} = \frac{\mu_0 I}{2\pi a} \hat{\boldsymbol \varphi} \] Poynting: \[ {\boldsymbol S} = \frac{1}{\mu_0} \frac{V}{L} \frac{\mu_0 I}{2\pi a} \hat{\boldsymbol x} \times \hat{\boldsymbol \varphi} = -\frac{VI}{2\pi a L} \hat{\boldsymbol r} \] and points radially inwards. Energy per unit time passing surface of wire: \[ \int d{\bf a} \cdot {\bf S} = S (2\pi a L) = -V I \] where the minus sign means energy is flowing in (the wire heats up), and the value is as expected.




Creative Commons License Except where otherwise noted, all content is licensed under a Creative Commons Attribution 4.0 International License.

Author: Jean-Sébastien Caux

Created: 2024-02-27 Tue 10:31