Pre-Quantum Electrodynamics

The Wave Equation emd.emw.we

  • PM 9
  • Gr 9

Take Maxwell's equations in vacuum:

\begin{align*} (i) &{\boldsymbol \nabla} \cdot {\bf E} = 0, &(iii) {\boldsymbol \nabla} \times {\bf E} + \frac{\partial {\bf B}}{\partial t} = 0, \\ (ii) &{\boldsymbol \nabla} \cdot {\bf B} = 0, &(iv) {\boldsymbol \nabla} \times {\bf B} - \mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t} = 0, \end{align*}

These take the form of coupled first-order partial differential equations for \({\bf E}\) and \({\bf B}\). They can be decoupled: simply take the curl of \((iii)\) and \((iv)\):

\begin{align*} {\boldsymbol \nabla} \times ({\boldsymbol \nabla} \times {\bf E}) = {\boldsymbol \nabla} ({\boldsymbol \nabla} \cdot {\bf E}) - {\boldsymbol \nabla}^2 {\bf E} = {\boldsymbol \nabla} \times \left( -\frac{\partial {\bf B}}{\partial t} \right) = -\frac{\partial}{\partial t} ({\boldsymbol \nabla} \times {\bf B}) = -\mu_0 \varepsilon_0 \frac{\partial^2 {\bf E}}{\partial t^2}, \\ {\boldsymbol \nabla} \times ({\boldsymbol \nabla} \times {\bf B}) = {\boldsymbol \nabla} ({\boldsymbol \nabla} \cdot {\bf B}) - {\boldsymbol \nabla}^2 {\bf B} = {\boldsymbol \nabla} \times \left(\mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t} \right) = \mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t} = -\mu_0 \varepsilon_0 \frac{\partial^2 {\bf B}}{\partial t^2}. \end{align*}

Since \({\boldsymbol \nabla} \cdot {\bf E} = 0\) and \({\boldsymbol \nabla} \cdot {\bf B} = 0\), we get the

Wave equations for electric and magnetic fields in vacuum

  • Gr (9.41)

\[ {\boldsymbol \nabla}^2 {\bf E} = \mu_0 \varepsilon_0 \frac{\partial^2 {\bf E}}{\partial t^2}, \hspace{1cm} {\boldsymbol \nabla}^2 {\bf B} = \mu_0 \varepsilon_0 \frac{\partial^2 {\bf B}}{\partial t^2}. \tag{WaveEq}\label{WaveEq} \]

The equations for the electric and magnetic fields are now decoupled, at the price of becoming second-order equations.

In vacuum, the cartesian components of the fields thus obey the three-dimensional wave equation \[ {\boldsymbol \nabla}^2 f = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}. \] Maxwell's equations therefore support solutions in terms of waves travelling at a speed \[ c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 299 792 458 ~m/s. \] That is, a form \[ {\bf E} ({\bf r},t) = {\bf E}_0 e^{i ({\bf k} \cdot {\bf r} - \omega t)}, \hspace{1cm} {\bf B} ({\bf r},t) = {\bf B}_0 e^{i ({\bf k} \cdot {\bf r} - \omega t)}, \] solves WaveEq for \(\omega = c |{\bf k}|\). Here and under, we use complex exponentials for convenience, remembering that the actual electric and magnetic fields are given by the real part.




Creative Commons License Except where otherwise noted, all content is licensed under a Creative Commons Attribution 4.0 International License.

Author: Jean-Sébastien Caux

Created: 2024-02-27 Tue 10:31