Pre-Quantum Electrodynamics
The One-Dimensional Dirac Delta Functionc.m.dd.1d
- \(\delta(x-a) = 0\), \(x \neq a\).
- \(\int dx \delta (x - a) = 1\) if integration region includes \(x = a\), and vanishes otherwise.
Consequences: for any smooth differentiable function \(f(x)\),
- \(\int dx f(x) \delta (x - a) = f(a)\)
- \(\int dx f(x) \delta' (x-a) = -f'(a)\)
- \(\delta (f(x)) = \sum_i \frac{1}{\left| \frac{df}{dx} (x_i)\right|} \delta(x - x_i)\) where \(x_i\) are zeroes of \(f(x)\).

Created: 2024-02-27 Tue 10:31