Pre-Quantum Electrodynamics
Electrostatic Field of Continuous Charge Distributionsems.es.ef.ccd
- PM 1.8, 1.11, 1.12, 1.13
- Gr 2.1.4
The electric field generated by a continuous charge density \(\rho({\bf r})\) in volume \({\cal V}\) can be easily calculated from Coulomb's law using the superposition principle. Since each infinitesimal volume element \(d\tau' = dx' dy' dz'\) contains a charge \(dq' = \rho({\bf r}') d\tau'\), we have
\[ {\bf E} ({\bf r}) = \frac{1}{4\pi\varepsilon_0} \int_{\cal V} d\tau' \rho({\bf r}') \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3} \tag{E_vcd}\label{E_vcd} \]
Similarly, if the charge is spread out over a two-dimensional surface \({\cal S}\) with (surface) charge density \(\sigma({\bf r})\), we have over an infinitesimal area \(da'\) a charge \(dq' = \sigma({\bf r}') da'\), so
\[ {\bf E} ({\bf r}) = \frac{1}{4\pi\varepsilon_0} \int_{\cal S} da' \sigma({\bf r}') \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3} \tag{E_scd}\label{E_scd} \]
Finally, for a line path \({\cal P}\) with linear charge density \(\lambda({\bf r}')\),
\[ {\bf E} ({\bf r}) = \frac{1}{4\pi\varepsilon_0} \int_{\cal P} dl' \lambda({\bf r}') \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3} \tag{E_lcd}\label{E_lcd} \]
Example
Find the electric field a distance \(z\) above the midpoint of a straight line segment of length \(2L\) carrying a uniform line charge \(\lambda\).
Solution: placing the line on the \(x\) axis, we have
\begin{align*} {\bf r} &= z \hat{\bf z}, {\bf r}' = x' \hat{\bf x}, dl' = dx', |{\bf r} - {\bf r}'| = \sqrt{z^2 + {x'}^2}, \end{align*}so we have
\begin{align*} {\bf E} = \frac{1}{4\pi \varepsilon_0} \int_{-L}^L dx' \lambda \frac{z \hat{\bf z} - x' \hat{\bf x}}{(z^2 + {x'}^2)^{3/2}} = \frac{\lambda}{4\pi \varepsilon_0} \left[ z \hat{\bf z} \int_{-L}^L dx \frac{1}{(z^2 + x^2)^{3/2}} - \hat{\bf x} \int_{-L}^L dx \frac{x}{(z^2 + x^2)^{3/2}} \right] \end{align*}The second integral vanishes by symmetry, whereas the first can be done in many ways, most easily by observing that \(\frac{d}{dx} \left( \frac{x}{\sqrt{z^2 + x^2}} \right) = \frac{1}{\sqrt{z^2 + x^2}} - \frac{x^2}{(z^2 + x^2)^{3/2}} = \frac{z^2}{(z^2 + x^2)^{3/2}}\), leading to
\begin{align*} {\bf E} = \frac{\lambda}{4\pi \varepsilon_0} z \hat{\bf z} \left. \left( \frac{x}{z^2\sqrt{z^2 + x^2}} \right) \right|_{-L}^L = \frac{1}{4\pi \varepsilon_0} \frac{2\lambda L}{z \sqrt{z^2 + L^2}} \hat{\bf z}. \end{align*}For large distances \(z \gg L\), this looks like the field of a point charge \(q\lambda L\):
\({\bf E} = \frac{1}{4\pi \varepsilon_0} \frac{2\lambda L}{z^2} \hat{\bf z}\),
whereas for short distances \(z \ll L\) the field looks like that of an infinite wire:
\({\bf E} = \frac{1}{4\pi \varepsilon_0} \frac{2\lambda}{z}\).

Created: 2024-02-27 Tue 10:31