Pre-Quantum Electrodynamics
Cylindrical coordinatesc.m.uf.cyl
\begin{align*}
\mbox{Gradient:}
&{\boldsymbol \nabla} T = \frac{\partial T}{\partial r}~\hat{\bf r}
+ \frac{1}{r} \frac{\partial T}{\partial \varphi}~\hat{\boldsymbol \varphi}
+ \frac{\partial T}{\partial z} ~\hat{\bf z}
\nonumber\\
\mbox{Divergence:}
&{\boldsymbol \nabla} \cdot {\bf v} = \frac{1}{r} \frac{\partial}{\partial r} (r v_r)
+ \frac{1}{r} \frac{\partial v_{\varphi}}{\partial \varphi} + \frac{\partial v_z}{\partial z}.
\nonumber\\
\mbox{Curl:}
&{\boldsymbol \nabla} \times {\bf v} = \left( \frac{1}{r} \frac{\partial v_z}{\partial \varphi} - \frac{\partial v_{\varphi}}{\partial z}\right) ~\hat{\bf r}
+ \left( \frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r} \right) ~\hat{\boldsymbol \varphi}
+ \frac{1}{r} \left( \frac{\partial}{\partial r} (r v_{\varphi}) - \frac{\partial v_r}{\partial \varphi} \right) ~\hat{\bf z}
\nonumber\\
\mbox{Laplacian:}
&{\boldsymbol \nabla}^2 T = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial T}{\partial r} \right)
+ \frac{1}{r^2} \frac{\partial^2 T}{\partial \varphi^2} + \frac{\partial^2 T}{\partial z^2}
\end{align*}

Created: 2024-02-27 Tue 10:31